Chapter 3

Accounting System Dynamics

Understanding financial statements is imperative for better management of corporations, while system dynamics (SD) offers dynamic modeling and simulation skills for better strategies of management. This chapter\(^1\) tries to present a consolidated principle of accounting system dynamics on the basis of simple principles from SD and accounting system. It is, then, specifically applied to model corporate financial statements (income statement, balance sheet and cash flow statement) described in the book [42]. It is shown that cash flow statement is indispensable for modeling financial statements. At the same time, a limitation of the current accounting system as a dynamic guidance for management strategies is pointed out. This demonstrates the importance of SD modeling in the field of accounting system.

3.1 Introduction

Business accounting system consists of three financial statements such as income statement, balance sheet and cash flow statement. Success or failure of corporations has been measured by these financial statements. In this sense, accounting system has been and will be a foundation for our business activities, on which macroeconomic activities are further built.

Accounting system is recently undergoing radical reforms in Japan in order to catch up with its global de facto standard of the American accounting system. The so-called Japanese version of financial Big Bang began to be implemented in March 2000. One of its major reforms is a legal requirement of cash flow statement which had been neglected in the Japanese accounting system until recently. Since then many introductory accounting books focusing on cash flows have been lined up in many bookstores, attracting attention to many business people in Japan.

Under such circumstances, recent financial scandals such as Enron and WorldCom were a surprise to most Japanese who have been trying to introduce the American accounting system as the most trustworthy system. What went wrong with them? One of the reflecting arguments was that the practice of the current accounting system is heavily dependent on professional accountants and specialized accounting software. If current accounting system were more friendly to managers and employees, then abnormal behaviors of financial practices such as mentioned above would have been avoided at its earlier stage, I thought.

It occurred to me then that SD approach to the accounting system could make it more friendly. Furthermore, it would be more practical, I thought, if corporate SD models could incorporate financial statements directly or indirectly, since model performances are better evaluated in terms of financial statements as done in the real world of business.

With these beliefs in mind, I began to search for references on a system dynamics method of modeling corporate financial statements. My search has been unsuccessful except the book [52] which was by chance suggested in the discussions among SD mailing community. It took more than a year to obtain the book through the Amazon on-line search for used books. It turned out, however, that the book was written with DYNAMO, and accordingly has been left unnoticed in my bookshelf.

Failure of the search gave me an incentive to develop a SD method of modeling financial statements from a scratch. I started working in the summer of 2001 when I was spending relatively a quiet time on a daily rehabilitation exercise in order to recover from the physical operation on my shoulder in June of the same year. This environment gave me a good chance for reading books on accounting. My readings mainly consisted of the introductory books such as [32], [42], [48], [78], [79], since my knowledge of accounting was limited. Through such readings, I have been convinced that system dynamics approach is very effective for understanding the accounting system.

The purpose of this chapter is, therefore, to understand the accounting system in terms of system dynamics. A consolidated principle of accounting system dynamics will be constructed for this purpose. It is then applied to model corporate financial statements exemplified in [42]. In the due course, it will be shown how cash flow statement plays an indispensable role in modeling corporate financial systems, contrary to the practice that it has not been required in the Japanese financial statements. I wondered why such an essential cash flow statement has been neglected until recently in Japan. System dynamics approach indeed sheds light on the wholeness of the current accounting system.

On the other hand, SD business models seem to have also neglected the importance of incorporating financial statements for better evaluation of model performances. Business models without such financial statements, whether they are explicitly or implicitly built in them, would be indeed incomplete, because they fail to reflect the wholeness of dynamic business activities. In this sense,
3.2 Principles of System Dynamics

System is a self-functioning whole consisting of interdependent parts that are interacting with one another with some influence from its outside world. Examples of systems are abundant such as our bodies, communities, corporations, and public organizations as well as subsystems within these systems. System dynamics is a discipline that tries to describe dynamic movements of these systems. For the understanding of financial accounting system, which is a main purpose of this chapter, it would be enough to consider the following three principles of system dynamics.

Principle 1 (System as a collection of stocks) System can be described by a collection of state variables, called stocks in system dynamics, whose levels or volumes are measured at a moment in time.

In other words, state variables (stocks) of the system are the entity that can be pictured or recorded for its description.

Principle 2 (Stock-flow relation) Levels of a stock can only be changed by the amount of flows measured for a period of time. The amount of flow that increases the stock is called inflow, while the one that decreases it is called outflow.

In this way, stock and flow constitute an inseparable relational unit in system dynamics [93]. Stock-flow relation is illustrated in Figure 3.1.

![Figure 3.1: Stock-Flow Relation](image)

Principle 3 (Information feedback) The amount of inflows and outflows is directly or indirectly determined either by the information obtained from the stocks through their feedback loops, or parameters obtained outside the system such that the system pursues its purpose.

As will be clarified below, modeling dynamic accounting system mostly depends on the parameters of transaction data obtained outside the system.
3.3 Principles of Accounting System

Accounting system of modern corporations consists of three financial statements such as balance sheet, income statement and cash flow statement. Examples of these statements used in this chapter are replicated from the book [42].

<table>
<thead>
<tr>
<th>Balance Sheet</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cash</td>
</tr>
<tr>
<td>B</td>
<td>Accounts Receivable</td>
</tr>
<tr>
<td>C</td>
<td>Inventories</td>
</tr>
<tr>
<td>D</td>
<td>Prepaid Expenses</td>
</tr>
<tr>
<td>A + B + C + D = E</td>
<td>Current Assets</td>
</tr>
<tr>
<td>F</td>
<td>Other Assets</td>
</tr>
<tr>
<td>G</td>
<td>Fixed Assets @ Cost</td>
</tr>
<tr>
<td>H</td>
<td>Accumulated Depreciation</td>
</tr>
<tr>
<td>G - H = I</td>
<td>Net Fixed Assets</td>
</tr>
<tr>
<td>E + F + I = J</td>
<td>Total Assets</td>
</tr>
<tr>
<td>K</td>
<td>Accounts Payable</td>
</tr>
<tr>
<td>L</td>
<td>Accrued Expenses</td>
</tr>
<tr>
<td>M</td>
<td>Current Portion of Debt</td>
</tr>
<tr>
<td>N</td>
<td>Income Taxes Payable</td>
</tr>
<tr>
<td>K + L + M + N = O</td>
<td>Current Liabilities</td>
</tr>
<tr>
<td>P</td>
<td>Long-Term Debt</td>
</tr>
<tr>
<td>Q</td>
<td>Capital Stock</td>
</tr>
<tr>
<td>R</td>
<td>Retained Earnings</td>
</tr>
<tr>
<td>Q + R = S</td>
<td>Shareholders’ Equity</td>
</tr>
<tr>
<td>O + P + S = T</td>
<td>Total Liabilities & Equity</td>
</tr>
</tbody>
</table>

Table 3.1: Balance Sheet in [42]

How are these three statements related one another, then? Their relationships are best described as follows:

The balance sheet reports the aggregate effect of transactions at a **point in time**, whereas the income statement, statement of retained earnings, and statement of cash flows report the effect of transactions over a **period of time**. [8, page 35].

The relationship of three financial statements thus can be best understood in terms of the above stock-flow relation of system dynamics as follows:

Principle 4 (Stock-flow relation of financial statements) Balance sheet is a collection of stocks only, while income statement and cash flow statement consist of inflows and outflows of the stocks in balance sheet.

Balance sheet in Table 3.1 is now best illustrated as a collection of stocks as in Figure 3.2. One remark may be needed on Net Fixed Assets. It is defined in
Table 3.1 as Fixed Assets @ Cost less Accumulated Depreciation. In Figure 3.2, it is renamed as Book Value of PP&E (Property, Plant and Equipment) and illustrated as the only stock for the net fixed assets. This is because, with the introduction of stock-flow relation, net fixed assets can be better represented as a book value relation as illustrated in Figure 3.3.

There are 13 stocks in the balance sheet of Figure 3.2. From the Principle 2, they all need to be illustrated together with inflows and outflows. However,
from the Principle 4, only inflows and outflows of Retained Earnings and Cash can be illustrated from the figures in Income and Cash Flow Statements. Specifically, inflows and outflows of Retained Earnings are obtained from the Income Statement in Table 3.2. That is, its inflow is revenues or net sales, while its outflows consist of costs of goods sold, operating expenses, net interest income, and income taxes. These stock-flow relations are illustrated in Figure 3.4.

<table>
<thead>
<tr>
<th>Income Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1 - 2 = 3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>4+5+6 = 7</td>
</tr>
<tr>
<td>3-7 = 8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>8+9-10 = 11</td>
</tr>
</tbody>
</table>

Table 3.2: Income Statement in [42]

In this figure it is modeled such that net interest income = interest payment - interest income. Moreover, interest payment and income are modeled as a part of non-operating expenses and revenues.

Figure 3.4: Income Statement as Stock-Flow Relation
3.3. PRINCIPLES OF ACCOUNTING SYSTEM

On the other hand, inflows and outflows of Cash could also be illustrated from Cash Flow Statement in Table 3.3. Its inflow is basically cash receipts and its outflow is cash disbursements. Cash flows, however, are better classified in detail into three activities; that is, operating activities, investing activities and financing activities, and accordingly stock-flow relations of Cash are usually described with additional inflows and outflows. They will be, thus, more concretely illustrated in Figure 3.15 after cash-related transactions are examined in Section 3.6.

<table>
<thead>
<tr>
<th>Cash Flow Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>b-c=d</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>a+d-e+f-g+h=i</td>
</tr>
</tbody>
</table>

Table 3.3: Cash Flow Statement in [42]

To illustrate stock-flow relations of the remaining 11 stocks, we need to add inflows and outflows to them by newly defining their names. A generic naming rule is employed here to define them as long as no other appropriate names are found in the existing accounting system. For instance, inflow and outflow of Accounts Payable are named Accounts Payable Incurred and Accounts Payable Paid. In this way, stock-flow relations of all stocks in the balance sheet are constructed.

How can the levels of these 13 stocks in the balance sheet be changed, then, by the changes in inflows and outflows? In the accounting system, they are changed by a so-called bookkeeping rule of double entry. Accounting system has a long history of more than several hundred years, and become a well-established and complete system. Its success has been attained by the introduction of this double entry principle. The double entry rule, however, has also been a major source of confusions for the students of accounting.

With the introduction of stock-flow relation, the double entry principle is now very intuitively illustrated as in Figure 3.5, in which all stocks in the Balance Sheet are collectively described as Assets and Liabilities, while Shareholders' Equity is described with its original stock names of Capital Stock and Retained Earnings. All inflows to Assets and all outflows from Liabilities and Equity are booked on the left side of debit, while all outflows from Assets and all inflows to Liabilities and Equity are booked on the right side of credit. That is to say, each transaction has to be booked simultaneously on both sides of debit and credit to keep the balance sheet in balance – a very simple rule!. It is formally summarized as follows:
CHAPTER 3. ACCOUNTING SYSTEM DYNAMICS

Principle 5 (Double entry rule of bookkeeping) All transactions in the accounting system are recorded as inflows and/or outflows of stocks in the balance sheet so that each transaction causes two corresponding stocks to change simultaneously in balance. For this purpose, each transaction is booked twice on both debit and credit sides. Inflows of assets and outflows of liabilities and shareholders’ equity are booked on the debit side, while outflows of assets and inflows of liabilities and shareholders’ equity are booked on the credit side.

3.4 Principle of Accounting System Dynamics

We have now obtained five principles from system dynamics and accounting system. Let us call them collectively Principle of Accounting System Dynamics (PASD).

Principle of Accounting System Dynamics Principles 1 through 5 obtained from system dynamics and accounting system constitutes the Principle of Accounting System Dynamics.

From the principle, four major categories of bookkeeping practices are easily classified as follows.

(1) Debit:inflow ↔ Credit:outflow Transactions within assets are classified in this category. For example, an increase in Fixed Assets by the purchase of PP&E is balanced by the decrease in Cash by its payment.

Figure 3.6 illustrates the example of bookkeeping (1). Right-hand diagram is the combined way to describe the left-hand diagram.
3.4. PRINCIPLE OF ACCOUNTING SYSTEM DYNAMICS

(2) Debit:outflow ↔ Credit:inflow Transactions within liabilities and equity are classified here. For example, a decrease in Retained Earnings caused by an increase in operating expenses such as sales & marketing expenses is balanced by the increase in Accrued Expenses.

Figure 3.7 illustrates the example of bookkeeping (2).

(3) Debit:inflow ↔ Credit:inflow Transactions in this category cause both Assets and Liabilities/Equity to increase. For instance, an increase in net sales causes both Accounts Receivable and Retained Earnings to increase.

Figure 3.8 illustrates the example of bookkeeping (3).

(4) Debit:outflow ↔ Credit:outflow Transactions here cause both Assets and Liabilities/Equity to decrease. For instance, payment of Accounts Payable causes both Cash and Accounts Payable to decrease.

Figure 3.9 illustrates the example of bookkeeping (4).
3.5 Accounting System Dynamics Simplified

According to PASD, all transactions have to be booked on both debit and credit sides simultaneously. This bookkeeping rule is formally described here as follows:

⇒ Transaction
⇒ [Stock 1 ±] ↔ [Stock 2 ±]

Stock 1 is a primary stock that is changed by the inflow or outflow of a transaction, and Stock 2 is its corresponding stock to be changed simultaneously for keeping the balance sheet in balance. For example, if an item in the accrued expenses is paid in cash, this transaction decreases both Accrued Expenses and Cash, and it is described as follows:

⇒ T: Accrued Expenses Paid
⇒ ![Accrued Expenses -] ↔ ![Cash -]

This formula implies that payment of accrued expenses lowers both the levels of accrued expenses and cash. Such an identification of a primary stock affected by the transaction and its corresponding stock is essential for modeling financial statements.

Now we are ready to apply PASD to the construction of a simplified business transaction model illustrated in Figure 3.10. [Companion model: ASD Simpli-
This simplified ASD model provides a fundamental framework not only for modeling our macroeconomic activities, but also for building financial business activities. Let us start with sales revenues. When Sales Revenues are realized, they are modeled as increased inflows to the stocks of Retained Earnings and Accounts Receivable as follows:

⇒ T: Sales Revenues
⇒ [Retained Earnings +] ↔ [Accounts Receivable +]

Simultaneously, corresponding Cost of Goods Sold to the sales revenues has to be subtracted from the Retained Earnings and Inventories as follows:

⇒ T: Cost of Goods Sold
⇒ [Retained Earnings -] ↔ [Inventories -: Shipment]

Non-Operating Revenues such as interest and dividend income are booked as increased inflows to the stocks of Retained Earnings and Accounts Receivable as follows:

⇒ T: Non-Operating Revenues
⇒ [Retained Earnings +] ↔ [Accounts Receivable +]

Accounts Receivable thus received is paid in due course to the Cash/Deposits as follows:

⇒ T: Receipts
⇒ [Accounts Receivable -] ↔ [Cash/Deposits +]

Operating Expenses consist of Sales & Marketing, Research & Development and General & Administrative Expenses. When they are paid out of Cash/Deposits, they are also deducted from the Retained Earnings as follows:

⇒ T: Operating Expenses
⇒ [Retained Earnings -] ↔ [Cash/Deposits -: Payments]

Non-Operating Expenses such as interest payment are also paid out of Cash/Deposits, and simultaneously deducted from the Retained Earnings as follows:

⇒ T: Non-Operating Expenses
⇒ [Retained Earnings -] ↔ [Cash/Deposits -: Payments]

When Income Taxes are paid out of Cash/Deposits, they are simultaneously deducted from the Retained Earnings as follows:

⇒ T: Income Taxes
⇒ [Retained Earnings -] ↔ [Cash/Deposits -: Payments]
Production activities incurs purchases of Raw Materials and employment of workers. These input values are treated as an increase in Inventories. Raw materials are usually paid in due course, causing a temporary increase in liabilities of Accounts Payable; meanwhile Wages are paid out of Cash/Deposits as follows:

\[\Rightarrow T: \text{Raw Materials} \]
\[\Rightarrow [\text{Inventories} +: \text{Production}] \leftrightarrow [\text{Accounts Payable} +] \]

\[\Rightarrow T: \text{Raw Materials Payments Dues} \]
\[\Rightarrow [\text{Accounts Payable} -] \leftrightarrow [\text{Cash/Deposits} -: \text{Payments}] \]

\[\Rightarrow T: \text{Wages} \]
\[\Rightarrow [\text{Inventories} +: \text{Production}] \leftrightarrow [\text{Cash/Deposits} -: \text{Payment}] \]

PP&E Purchase as new investment adds to Fixed Assets, while its payment is done out of Cash/Deposits as follows:

\[\Rightarrow T: \text{PP&E Purchase} \]
\[\Rightarrow [\text{Fixed Assets} +] \leftrightarrow [\text{Cash/Deposits} -] \]

Depreciation of Fixed Assets has to be handled in two ways, depending on the kind of Fixed Assets. If Fixed assets are not directly used in production, their depreciation incurs an increase in operating expenses (whose case is not considered here). Meanwhile Fixed Assets contributing directly to the production process is treated as follows:

\[\Rightarrow T: \text{Depreciation} \]
\[\Rightarrow [\text{Fixed Assets} -] \leftrightarrow [\text{Inventory} +: \text{Production}] \]

Short Term and Long Term Loans are made as an increase in Debts/Deposits, while its Reimbursements are paid out of Cash/Deposits as follows:

\[\Rightarrow T: \text{Loans} \]
\[\Rightarrow [\text{Debt} +] \leftrightarrow [\text{Cash/Deposits} +] \]

\[\Rightarrow T: \text{Reimbursements} \]
\[\Rightarrow [\text{Debt} -] \leftrightarrow [\text{Cash/Deposits} -: \text{Payments}] \]
3.5. ACCOUNTING SYSTEM DYNAMICS SIMPLIFIED

Figure 3.10: Accounting System Dynamics Simplified
CHAPTER 3. ACCOUNTING SYSTEM DYNAMICS

3.6 Accounting System Dynamics in Action

On the basis of the PASD, we are now in a position to model real corporate financial statements in detail. For this purpose, examples of transactions are taken from the book [42]. That is, all transactions described below are quoted from the book. Accordingly, this section can be better followed with the book at hand and our simplified ASD model in mind simultaneously [Companion model: Accounting.vpm].

In the book 31 transactions are explained to describe the start-up business activities of AppleSeed Enterprises, Inc. In our modeling here each transaction is assumed to be taken in a week without losing generality, so that 31 transactions are done in 31 weeks. There are 28 transaction items, starting with suffix T:.

Transaction 1 A group of investors is willing to exchange their $1.5 million in cash for stock certificates representing 150,000 common shares of AppleSeed Enterprises, Inc.

Note: When you formed the company you bought 50,000 shares of “founder’s stock” at $1 per share for a total investment of $50,000 in cash. Thus after this sale to the investor group there will be 200,000 shares outstanding. They will own 75% of AppleSeed and you will own the rest.

⇒ T: New Issue of Shares (= 150,000 common shares)
⇒ [Capital Stock +] ↔ [Cash +]

Transaction 2 Book all payroll-associated company expenses totaling $6,230 including salary, employer’s contribution to FICA (Social Security)\(^4\) and various insurance expenses. Issue yourself a payroll check for $3,370 (your $5,000 monthly salary minus $1,250 in federal and state withholding tax and $380 for your own contribution to FICA).

⇒ T: General & Administrative (= $6,230)
⇒ [Accrued Expenses +] ↔ [Retained Earnings - : Operating Expenses]
⇒ T: Accrued Expenses Paid (= $3,370)
⇒ [Accrued Expenses -] ↔ [Cash -]

Transaction 3 Borrow $1 million to purchase an all-purpose building. This term note will run for 10 years, calling for yearly principal payments of $100,000 plus interest at a rate of 10% per annum.

\(^4\)The Federal Insurance Contributions Act (FICA) of 1937 is the U.S. law that mandates a payroll tax on the paychecks of employees, as well as contributions from employers, to fund the Social Security and Medicare programs.
Table 3.4: All Transaction Data

| Transactions | B | T2 | T3 | W | B | T7 | T8 | T9 | D1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12 | T13 | T14 | T15 | T16 | T17 | T18 | T19 | T20 | T21 | T22 | T23 | T24 | T25 | T26 | T27 | T28 | T29 | T30 | T31 |
|-------------------------------|
| T: Account Receivable Paid | |
| T: Long-Term Borrowing | 3.00 | 0.00 | |
| T: New Issue of Shares | | 150,000 | |
| T: Wage | 6.62 | 6.62 | |
| T: PPP Purchase | 1,500,000 | |
| T: Other Asset Purchase | | | | 150,000 | |
| T: Account Payable Paid |
| T: Accrued Expenses Paid | 250,000 | 150,000 | |
| T: Current Debt Paid |
| T: Insurances Pre. in Paid | |
| T: Insurance Premium |
| T: Raw Material Purchase |
| T: All Other Expenditure |
| T: Research & Developmnt | |
| T: Payroll-associated fringe benefits | |
| T: Salaries & Benefits (AP) | 162,900 | |
| T: Production |
| T: Completion |
| T: Depreciation |
| T: Principal Payments |
| T: Par Share Dividend |
| T: Customer Order |
| Date: Price Change | | 4.2 | 8.1 | |

3.6. ACCOUNTING SYSTEM DYNAMICS IN ACTION
CHAPTER 3. ACCOUNTING SYSTEM DYNAMICS

⇒ T: Long-Term Borrowing (= $1 million)
⇒ [Long-Term Debt +] ↔ [Cash +]

⇒ T: Principal Payments (= $100,000)
⇒ [Long-Term Debt -] ↔ [Current Portion of Debt +]

Transaction 4 Purchase 100,000 square foot building and land for $1.5 million in cash. This facility will serve as AppleSeed Enterprises’ headquarters, manufacturing facility and warehouse.

⇒ T: Property, Plant & Equipment Purchase (= $1.5 million)
⇒ [Book Value of PP & E +] ↔ [Cash -]

Transaction 5 Book this month’s payroll-associated expenses of $14,790, (that is, $7,680 for Sales & Marketing and $7,110 for General & Administrative). These expenses include salaries, wages, insurance and other fringe benefits. Issue payroll checks totaling $7,960 to SG & A (sales, general and administrative) employees.

⇒ T: Sales and Marketing (AE) (= $7,680)
⇒ [Retained Earnings -] ↔ [Accrued Expenses +]

⇒ T: General & Administrative (= $7,110)
⇒ [Retained Earnings -] ↔ [Accrued Expenses +]

⇒ T: Accrued Expenses Paid (= $7,960)
⇒ [Accrued Expenses -] ↔ [Cash -]

Transaction 6 Pay all the payroll-associated expenses that were accrued in Transaction 2 and Transaction 5, including FICA, withholding tax and unemployment insurance due the government. Also pay to private insurance companies the workmen’s compensation and health and life insurance premiums.

⇒ T: Accrued Expenses Paid (= $9,690)
⇒ [Accrued Expenses -] ↔ [Cash -]

Transaction 7 Place an order for $250,000 worth of applesauce-making machinery. Make a prepayment of $125,000 with the balance due upon successful installation.
3.6. ACCOUNTING SYSTEM DYNAMICS IN ACTION

⇒ T: Other Assets Purchase (= $125,000)
⇒ [Other Assets +] ↔ [Cash -]

Transaction 8 Make final payment of $125,000, the balance due on the applesauce-making machinery.

⇒ T: Other Assets Purchase (= $125,000)
⇒ [Other Assets +] ↔ [Cash -]

After the completion of payment and the delivery of machinery, it is now recorded as PP&E. It may be written in our transaction format as follows.

⇒ Installation (= $250,000)
⇒ [Book Value of PP&E +] ↔ [Other Assets -]

Transaction 9 Book supervisor’s salary and associated payroll expenses as a General & Administrative expense since we have not yet started production. Issue first month’s salary check. Make no entries for hourly workers since they have not yet reported for work.

⇒ T: General & Administrative (= $4,880)
⇒ [Retained Earnings -] ↔ [Accrued Expenses +]

⇒ T: Accrued Expenses Paid (= $2,720)
⇒ [Accrued Expenses -] ↔ [Cash -]

Transaction 10 Order and receive 1 million applesauce jar labels at a cost of $0.02 each for a total of $20,000 to be paid 30 days after delivery.

⇒ T: Raw Material Purchase (= $20,000)
⇒ [Raw Material Inventory +] ↔ [Accounts Payable +]

From this transaction on, production activities are booked under the stock account of inventory, which is, accordingly, separated from the balance sheet of assets here, though it is still its part. Moreover, inventories are further broken down as illustrated in Figure 3.11.

Transaction 11 Receive a two months’ supply of all raw materials (apples, sugar, cinnamon, jars, caps, boxes) worth $332,400 in total. (That is, $8.55 total materials per case less $0.24 for the already received labels times 40,000 cases.)
⇒ T: Raw Material Purchase (= $332,400)
⇒ [Raw Material Inventory +] ↔ [Accounts Payable +]

Transaction 12 Pay production workers’ wages and supervisor’s salary for the month. Book associated fringe benefits and payroll taxes. (Now that we are manufacturing product, these salary and wages are costs that increase the value of our product, and are shown as an increase in inventory.)

⇒ T(Cash-): Wages (= $9,020)
⇒ [Work in Process Inventory +] ↔ [Cash -]

⇒ T: Payroll-associated Fringes and Taxes (= $8,160)
⇒ [Work in Process Inventory +] ↔ [Accrued Expenses +]

Figure 3.11: Inventories with Production

As production starts, raw material use may be written as follows.
3.6. ACCOUNTING SYSTEM DYNAMICS IN ACTION

⇒ T: Production (= 20,000 cases)
⇒ Raw Material Use (= 20,000 * $8.55 = $171,000)
⇒ [Raw Material Inventory -] ↔ [Work in Process Inventory +]

Transaction 13 Book this month’s manufacturing depreciation of $7,143 and $8,677 covering “all other” overhead costs. Note that depreciation is not a cash expense and will not lower our cash balance. But, the “all other” overhead we will eventually have to pay with cash.

⇒ T: Depreciation (= $7,143)
⇒ [Work in Process Inventories +] ↔ [Book Value of PP&E -]
⇒ T: All Other Overhead (= $8,677)
⇒ [Work in Process Inventories +] ↔ [Account Payable]

Transaction 14 Pay for 1 million labels received in Transaction 10. Issue a check to our vendor for $20,000 as payment in full.

⇒ T(Cash-): Accounts Payable Paid (= $20,000)
⇒ [Accounts Payable -] ↔ [Cash -]

Transaction 15 Finish production of 19,500 cases of our applesauce. Move product from work-in-process (“WIP”) Inventory into Finished Goods. This movement of inventory into a different class is really just an internal management control transaction as far as the financial statements are concerned. There is no effect on the three major financial statements of AppleSeed. INVENTORIES on the Balance Sheet remains the same. Our Inventory Valuation Worksheet, as shown below, reflects the change in inventory status.

This may be written as follows.

⇒ T: Completion (= 19,500 cases)
⇒ Completion Value (= 19,500 * 10.2 dollar = $198,900)
⇒ [Work in Process Inventory -] ↔ [Finished Goods Inventory +]

Transaction 16 Scrap the value of 500 cases of applesauce from the work-in-process inventory. Take a loss on the Income Statement for this amount.

⇒ T: Scrapped Cases (= 500 cases)
⇒ Scrapped Cases Value (= 500 * 10.2 dollar = $5,100)
⇒ [Work in Process Inventory -]

CHAPTER 3. ACCOUNTING SYSTEM DYNAMICS

↔ [Retained Earnings -: Cost of Goods Sold]

Transaction 17 Pay a major supplier a portion of what is due for apples and jars. Cut a check for $150,000 in partial payment.

⇒ T: Accounts Payable Paid (= $150,000)
⇒ [Account Payable -] ↔ [Cash -]

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.</td>
<td>Receive a month’s raw material supply less labels. (see T10)</td>
<td>$166,200</td>
</tr>
<tr>
<td>L.</td>
<td>Move a month’s supply of raw materials into WIP. (see T12).</td>
<td>$171,000</td>
</tr>
<tr>
<td>M.</td>
<td>Pay hourly workers, supervisor for another month. (see T12)</td>
<td>$17,180</td>
</tr>
<tr>
<td>N.</td>
<td>Book manufacturing depreciation for the month. (see T13)</td>
<td>$7,143</td>
</tr>
<tr>
<td>O.</td>
<td>Book “all other” mfg. overhead for another month. (see T13)</td>
<td>$8,677</td>
</tr>
<tr>
<td>P.</td>
<td>Move 19,000 cases to finished goods standard cost.</td>
<td>$193,800</td>
</tr>
<tr>
<td>Q.</td>
<td>Scrap 150 cases from WIP. (see T16)</td>
<td>$1,530</td>
</tr>
</tbody>
</table>

Table 3.5: Inventory Valuation Worksheet for Transaction 18

Transaction 18 Make entries in the *Income Statement*, *Cash Flow Statement* and *Balance Sheet* as shown in the total column at below right. Note that for each worksheet entry (K through Q below), the change in Assets equals the change in Liabilities.

⇒ T: Raw Material Purchase (= $166,200) (K)
⇒ [Raw Material Inventory +] ↔ [Accounts Payable -]

⇒ T(Cash-): Wages (= $9,020) (M)
⇒ [Work in Process Inventory +] ↔ [Cash -]

⇒ T: Payroll-associated Fringes and Taxes (= $8,160) (M)
⇒ [Work in Process Inventory +] ↔ [Accrued Expenses +]

⇒ T: Depreciation (= $7,143) (N)
⇒ [Work in Process Inventory +] ↔ [Book Value of PP&E -]

⇒ T: All Other Overhead (= $8,677) (O)
⇒ [Work in Process Inventory +] ↔ [Account Payable -]

⇒ T: Scrapped Cases (= 150 cases) (Q)
(⇒ Scrapped Cases Value (= 150 * 10.2 dollar = $1,530))
⇒ [Work in Process Inventory -]
⇒ [Retained Earnings - : Cost of Goods Sold]
3.6. ACCOUNTING SYSTEM DYNAMICS IN ACTION

In addition, raw material use and completion of work in process may be written as follows.

⇒ T: Production (= 20,000 cases)
⇒ Raw Material Use (= 20,000 * $8.55 = $171,000) (L)
⇒ [Raw Material Inventory -] ↔ [Work in Process Inventory +]

⇒ T: Completion (= 19,000 cases)
⇒ Completion Value (= 19,000 * 10.2 dollar = $193,800) (P)
⇒ [Work in Process Inventory -] ↔ [Finished Goods Inventory +]

Transaction 19 Our advertising agency submits a bill for designing, printing and mailing 4,500 very fancy brochures for a $38,250 total cost. The T-shirts cost $6.50 each for a total of $65,000 for 10,000 shirts. Book these amounts (totaling $103,250) as an AppleSeed Enterprises marketing and selling expense.

⇒ T: Sales & Marketing (= $103,250)
⇒ [Account Payable +] ↔ [Retained Earnings -: Operating Expenses]

Transaction 20 Receive order for 1,000 cases of applesauce at a selling price of $15.90 per case. Ship product and send a $15,900 invoice to the customer. Book on the Income Statement the 2% commission ($318) for our broker as a SALES & MARKETING expense.

⇒ T: Customer Order (= 1,000 cases)
⇒ Net Sales (= 1,000 * $15.90 = $15,900))
⇒ [Retained Earnings +: Revenues] ↔ [Accounts Receivable +]

⇒ Shipment Value (= 1,000 cases * $ 10.2 per case = $10,200)
⇒ [Finished Goods Inventory -]
⇒ [Retained Earnings -: Costs of Goods Sold]

This transaction of sales invokes two different changes in stocks as illustrated in Figure 3.12. First, sales value increases both retained earnings and account receivable. Second, shipping value obtained by the unit cost has to be subtracted from finished goods inventory and simultaneously booked as costs of goods sold.

⇒ T: Sales & Marketing (= $318)
⇒ [Retained Earnings -] ↔ [Accrued Expenses +]
CHAPTER 3. ACCOUNTING SYSTEM DYNAMICS

Accounts Receivable.
Inventories
Retained Earnings.
Shipment
Revenues.
Cost of Goods Sold
Customer Order
Net Sales.
Unit Cost
Raw Materials
Wages
All Other
Depreciation
Figure 3.12: Double Transactions caused by Customer Order

Transaction 21 Receive an order for 15,000 cases of applesauce at a selling price of $15.66 per case, $234,900 for the total order.
Note: Receiving an order has no effect on the three major financial statements. Only when the product ordered is shipped to customers do you record a SALE and the associated COST OF GOODS SOLD. Yet, this could be recorded as an increase in backlog order.

Transaction 22 Ship 15,000 cases of applesauce and send a $234,900 invoice to the customer.

⇒ T: Customer Order (= 15,000 cases)
(⇒ Net Sales (= 15,000 * $15.66 = $234,900))
⇒ [Retained Earnings +: Revenues] ↔ [Accounts Receivable +]

⇒ Shipment Value (= 15,000 cases * $ 10.2 per case = $153,000)
⇒ [Finished Goods Inventory -] ↔ [Retained Earnings -: Costs of Goods Sold]

⇒ T: Sales & Marketing (= $4,698)
⇒ [Retained Earnings -] ↔ [Accrued Expenses +]

Transaction 23 Receive payment of $234,900 for shipment that was made in Transaction 22. Pay the broker his $4,698 selling commission.
Note: A customer’s cash payment for goods in no way changes the Income Statement. The Income Statement recorded a sale when first, we shipped the goods, and second, the customer incurred the obligation to pay (our accounts receivable).
3.6. ACCOUNTING SYSTEM DYNAMICS IN ACTION

⇒ T: Accounts Receivable Paid (= $234,900)
⇒ [Cash +] ↔ [Accounts Receivable -]

⇒ T(Cash-): Accrued Expenses Paid (= $4,698)
⇒ [Accrued Expenses -] ↔ [Cash -]

Transaction 24 Write off the $15,900 accounts receivable that was entered when you made the 1,000 case shipment. Also, reduce the amount payable to our broker by what would have been his commission on the sale. If we don’t get paid, he doesn’t either!

Note: Our out-of-pocket loss is really just the $10,200 inventory value of the goods shipped. Remember that in Transaction 20 we booked a profit from this sale of $5,382 (= the $15,900 sale minus the $10,200 cost of goods minus the $318 selling commission). Thus, if you combine the $15,582 drop in RETAINED EARNINGS booked in this transaction plus the $5,382 increase in RETAINED EARNINGS from Transaction 20, you are left with our loss of $10,200 from this bad debt.

⇒ T: write-off (= $15,900)
⇒ [Retained Earnings -: Operating Expenses] ↔ [Accounts Receivable -]

⇒ T: Sales & Marketing (= -$318)
⇒ [Retained Earnings -: Operating Expenses] ↔ [Accrued Expenses +]

Transaction 25 With this transaction we will pay a full year’s insurance premium of $26,000, giving us three months’ prior coverage (the amount of time we have been in business) and also coverage for the remaining nine months in our fiscal year.

Note: As time goes by, we will take this remaining $19,500 as an expense through the Income Statement. The transaction at that time will be to book the expense in the Income Statement and at the same time lower the amount of PREPAID EXPENSE in the Balance Sheet.

⇒ T: Insurance Premium (= $26,000)
⇒ [Prepaid Expenses +] ↔ [Cash -]

⇒ T: Insurance Premium Paid (= $6,500)
⇒ [Prepaid Expenses -] ↔ [Retained Earnings -: Operating Expenses]

Transaction 26 Make a quarterly payment of $25,000 in principal and also a $25,000 interest payment on the building mortgage.
CHAPTER 3. ACCOUNTING SYSTEM DYNAMICS

⇒ T: Current Debt Paid (= $25,000)
⇒ [Current Portion of Debt -] ↔ [Cash -]

⇒ T: Principal Payment (= $25,000)
⇒ [Long-Term Debt -] ↔ [Current Portion of Debt +]

⇒ T: Interest Expenses (= $25,000)
⇒ [Retained Earnings -] ↔ [Cash -]

Transaction 27 Pay payroll taxes, fringe benefits and insurance premiums.
Write checks to the government and to insurance companies totaling $18,480 for payment of withholding and FICA taxes and for payroll associated fringe benefits.

Note: The Income Statement and RETAINED EARNINGS are not affected by this payment transaction. Because AppleSeed runs its books on an accrual basis, we already “expensed” these expenses when they occurred – not when the actual payment is made.

⇒ T: Accrued Expenses Paid (= $18,480)
⇒ [Accrued Expenses -] ↔ [Cash -]

Transaction 28 Pay suppliers a portion of what is due for apples and jars. Cut a check for $150,000 in partial payment.

⇒ T: Accounts Payable Paid (= $150,000)
⇒ [Accounts Payable -] ↔ [Cash -]

Transaction 29 Book a series of entries in the Income Statement, Cash Flow Statement and the Balance Sheet summarizing transactions that take place in the remaining nine months of AppleSeed Enterprises’ first fiscal year.

(⇒ Transaction Items from this week on are not specified in the book [42]. Consequently, our model here found some inconsistencies of figures in the book.) The reader who followed our description up to this point can easily fill in the transactions given in Table 3.4.

Transaction 30 On a pretax income of $391,687 AppleSeed owes 34% in federal income taxes ($133,173), and $6,631 in state income taxes for a total income tax bill of $139,804. We will not actually pay the tax for several
3.6. ACCOUNTING SYSTEM DYNAMICS IN ACTION

months.

Income tax is calculated as Income before tax times Income tax rate of 34%, and built in the program.

⇒ T: Income Taxes (= 34% * Income before Tax)
⇒ [Income Tax Payable →] ↔ [Retained Earnings ←]

Transaction 31 Declare and pay a $0.375 per share dividend to AppleSeed’s shareholders. (With 200,000 shares outstanding, this dividend will cost the company $75,000.)

⇒ T: Par Share Dividend (= $0.375 per share)
⇒ Dividend (= $0.375 * Shares Outstanding)
⇒ [Cash -: Dividends Paid to Stockholders]
⇒ [Retained Earnings -: Dividends]

<table>
<thead>
<tr>
<th>General & Administrative Expenses</th>
<th>Net Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retained Earnings</td>
<td>Revenues</td>
</tr>
<tr>
<td>Sales & Marketing</td>
<td>Dividends</td>
</tr>
<tr>
<td>Insurance Premium Paid</td>
<td>T: Interest Expenses</td>
</tr>
<tr>
<td>Operating Expenses</td>
<td>Sales & Marketing (AP)</td>
</tr>
<tr>
<td>Interest Expenses</td>
<td>Sales & Marketing (AE)</td>
</tr>
<tr>
<td>Income Taxes</td>
<td>General & Administrative (AE)</td>
</tr>
<tr>
<td>Income before Tax</td>
<td>Income Tax Rate</td>
</tr>
<tr>
<td><Net Sales></td>
<td>25 5 9 19 20 22 24 24 29 29 25 29 26 29 210 167</td>
</tr>
</tbody>
</table>

Figure 3.13: Income Statement
Modeling corporate financial statements are now completed. They consists of Income Statement (Figure 3.13) and Balance Sheet (Figure 3.14). Inventories (Figure 3.11) is a part of the balance sheet and Cash Flow Statements (Figures 3.15) is a part of balance sheet.

![Figure 3.14: Balance Sheet](image)

3.7 Making Financial Statements

Transactions given in the book [42] are not arranged as monthly data. To run the SD model, those data need to be reinterpreted as monthly data. For instance, Transaction 5 has to be regarded as the one in the 5th month. This is what is assumed here for the SD modeling.

There are two methods to import transaction data into the model. They could be put in the table functions, whose names are given in the list of Figure 3.16.
Almost half of the names in the list are related with the stock: Cash. This is because all transactions in a market economy need to be eventually paid in cash, and cash-related transactions constitute a large portion of transactions. Hence, Cash becomes the largest group among the primary stocks to be changed. The other major groups are related with the transactions by credits such as Accounts (Receivable or Payable), and (Prepaid or Accrued) Expenses. Transaction data in Figure 3.16 are arranged to reflect these facts.

Alternatively, transaction data could be prepared outside the model as those of spreadsheet such as Excel, then imported to the model. There are quite a few accounting software on the market that enable to keep recording daily transactions. These booked data are later classified as ledgers of items to construct balance sheet. Using spreadsheet such as Excel, therefore, it may not be hard to
import them to the SD model as the data of inflows and outflows as shown in the list in Figure 3.16. The SD model could then become an alternative accounting software. Moreover, it could become a better one as a financial analysis tool as shown in the next section.

In fact, balance sheet in Table 3.6 is constructed by using the data given in Figure 3.16 (or alternatively by importing them as spreadsheet data). Due to a limitation of space, only figures of five different months among 31 months are shown here. Income statement and cash flow statement can be procured in a similar fashion.

3.8 Ratio Analysis of Financial Statements

Structure of the corporate financial model developed above is very static in the sense that accounting system is merely to keep records of all transactions of the past business activities. In other words, transaction data are just imported to the inflows and outflows of the model as the outside parameters. In this sense, accounting system is not a SD system. To be a truly dynamic SD system, information for dynamic decision-making needs to be obtained within the system.
3.8. RATIO ANALYSIS OF FINANCIAL STATEMENTS

<table>
<thead>
<tr>
<th>Time(Month)</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>50,000</td>
<td>1.046M</td>
<td>776,260</td>
<td>747,240</td>
<td>588,220</td>
</tr>
<tr>
<td>Accounts Receivable</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inventories</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>385,400</td>
<td>577,970</td>
</tr>
<tr>
<td>Prepaid Expenses</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Current Assets</td>
<td>50,000</td>
<td>1.046M</td>
<td>776,260</td>
<td>1.132M</td>
<td>1.166M</td>
</tr>
<tr>
<td>Other Assets</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Book Value of PP&E</td>
<td>0</td>
<td>1.5M</td>
<td>1.75M</td>
<td>1.742M</td>
<td>1.735M</td>
</tr>
<tr>
<td>Assets</td>
<td>50,000</td>
<td>2.546M</td>
<td>2.526M</td>
<td>2.875M</td>
<td>2.901M</td>
</tr>
<tr>
<td>Accounts Payable</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>341,077</td>
<td>469,204</td>
</tr>
<tr>
<td>Accrued Expenses</td>
<td>0</td>
<td>2,860</td>
<td>2,160</td>
<td>10,320</td>
<td>18,480</td>
</tr>
<tr>
<td>Current Portion of Debt</td>
<td>0</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Income Taxes Payable</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Current Liabilities</td>
<td>0</td>
<td>102,860</td>
<td>102,160</td>
<td>451,397</td>
<td>587,684</td>
</tr>
<tr>
<td>Long-Term Debt</td>
<td>0</td>
<td>900,000</td>
<td>900,000</td>
<td>900,000</td>
<td>900,000</td>
</tr>
<tr>
<td>Capital Stock</td>
<td>50,000</td>
<td>1.55M</td>
<td>1.55M</td>
<td>1.55M</td>
<td>1.55M</td>
</tr>
<tr>
<td>Retained Earnings</td>
<td>0</td>
<td>-6,230</td>
<td>-25,900</td>
<td>-25,900</td>
<td>-135,780</td>
</tr>
<tr>
<td>Shareholders’ Equity</td>
<td>50,000</td>
<td>1.543M</td>
<td>1.524M</td>
<td>1.524M</td>
<td>1.414M</td>
</tr>
<tr>
<td>Liabilities & Equity</td>
<td>50,000</td>
<td>2.546M</td>
<td>2.526M</td>
<td>2.875M</td>
<td>2.901M</td>
</tr>
</tbody>
</table>

Table 3.6: Balance Sheet Table

through the information feedback loops as depicted in Principle 3.

In the accounting system, balance sheet could become a main source of information from which many important feedback loops originate for management strategies and policies. Traditional method of obtaining such feedback information is a so-called financial ratio analysis. In the book [42], eleven such ratios are defined and grouped into four types as follows.

Liquidity Ratios

\[
\text{Current Ratio} = \frac{\text{Current Assets}}{\text{Current Liabilities}}
\]

\[
\text{Quick Ratio} = \frac{\text{Cash} + \text{Accounts Receivable}}{\text{Current Liabilities}}
\]

Asset Management Ratios

\[
\text{Inventory Turns} = \frac{\text{Cost of Goods Sold}}{\text{Inventories}}
\]

\[
\text{Asset Turn} = \frac{\text{Net Sales}}{\text{Assets}}
\]

\[
\text{Accounts Receivable Days} = \frac{\text{Accounts Receivable} \cdot (365)}{\text{Net Sales}}
\]
CHAPTER 3. ACCOUNTING SYSTEM DYNAMICS

Figure 3.17: Ratio Analysis Diagram

Profitability Ratios

Return on Assets (ROA) = \(\frac{\text{Net Income}}{\text{Assets}} \)

Return on Equity (ROE) = \(\frac{\text{Net Income}}{\text{Shareholders' Equity}} \)

Return on Sales (Profit Margin) = \(\frac{\text{Net Income}}{\text{Net Sales}} \)

Gross Margin (Gross Profits) = \(\frac{\text{Gross Margin}}{\text{Net Sales}} \)

Leverage Ratios

Debt-to-Equity = \(\frac{\text{Current Portion of Debt} + \text{Long-Term Debt}}{\text{Shareholders' Equity}} \)

Debt Ratio = \(\frac{\text{Current Portion of Debt} + \text{Long-Term Debt}}{\text{Assets}} \)
3.9 Toward A Corporate Archetype Modeling

Balance sheet represents a whole system of financial activities for corporations, and managers have to rely on the information obtained within the system for their strategies and policies. Liquidity ratios, asset management ratios, profitability ratios and leverage ratios presented in the previous section provide essential indices of management strategies and financial policies. In other words, stocks in the balance sheet provide very important sources of information for corporations. From system dynamics viewpoint, the use of such information is nothing but establishing feedback loops from the sources of information (that is, stocks in the balance sheet) to the inflows and outflows. In this sense, 11 ratios illustrated in Figure 3.17 could be important parts of system feedback loops. With the introduction of such feedback loops, our corporate financial model could become a relatively closed system and provide a wholistic picture of corporate dynamics.

It could be inferred, however, that such traditional ratio analysis is not the only method for managers to extract managerial information. For instance, a discrepancy between net cash flow and net income, as illustrated in Figure 3.19, could be another important source of information for better liquidity management. In this way, a lot of essential information could be derived within the SD
accounting system, depending on the objectives of management.

![Net Cash Flow and Net Income](image)

Figure 3.19: Net Cash Flow and Net Income

What kind of information feedback loops, then, need to be built and how? Learning the current accounting system merely gives us no clue. In order to incorporate information feedback loops, we have to know how decisions on transactions such as the ones considered in section 3.6 are made. The introduction of appropriate feedback loops, in this sense, depends on the types of business activities of corporations. Only when such decision-making processes are specifically incorporated into our corporate financial model, it becomes a truly SD accounting model.

Even so, as long as modern corporations are part of the global market economic system, there could be generally accepted rules of drawing financial information feedback loops to make our SD model a truly corporate financial model. Such a model, if constructed, could be a corporate business archetype. In this sense, our research here is nothing but a beginning, though an important start, toward a truly corporate archetype modeling. This will be our task to be challenged in the near future.

Conclusion

We have demonstrated how to construct a SD model of corporate financial statements such as given in the book [42], by establishing the principle of accounting system dynamics (PASD) that consists 5 principles obtained from system dynamics and accounting system. It is shown that cash flow statement is indispensable, contrary to the practice that it has been long neglected in the Japanese financial statements. The model is shown to be static in the sense that all
transaction data are given as parameters outside the system and no information obtained from the stocks in the balance sheet is utilized for better management practices - a limitation of the current accounting system. To make it a truly dynamic SD model, information feedback loops have to be incorporated in it.

Questions for Deeper Understanding

ASD Simplified.vpmx model illustrates 8 stages of typical start-up business transactions based on the Principle of Accounting System Dynamics. These transactions cover almost all kind of double-entry bookkeeping practices accountants are following daily. Macroeconomic activities are nothing but the sum of such microeconomic activities of all economic agents such as firms and households. Accordingly, it must be essential for macroeconomic researchers to understand double-entry bookkeeping principles at the microeconomic level.

With these in mind, imagine any type of business you would like to start up. According to the 8 stages in the model, state a brief story of your business process, step by step, and specify transactions you need. Then, discuss how these transactions affect the items (stocks) of your Balance Sheet statement, by building your simple ASD business model at each stage; that is, only the model of stock and flows that are affected by the transactions of that stage. You need not fill in concrete numbers or data.

For example at each stage of i, $i = 1, 2 \ldots, 8$,

(a) Your business story and
(b) Your transactions, then
(c) Illustrate conceptual stock-flow diagrams of these transactions.