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1 Introduction

In the book Beyond Walras, Keynes and Marx [8] , I have tried to synthesize
three effete economic paradigms in the industrial age: neoclassical, Keynesian,
and Marxian schools, under a general equilibrium framework, and presented a
new economic paradigm suitable for the information age. Through the work, my
interest has gradually shifted toward a sustainability of such new economy. This
shift of interest resulted in the edition of the book Sustainable Global Commu-
nities in the Information Age [9], in which I have contributed a chapter myself:
Sustainability and a MuRatopian Economy. In the chapter, sustainability is
newly defined in terms of physical, social and ecological reproducibility from
a general equilibrium point of view developed in [8]. At that time, I had no
tools or softwares available with me which enable to model my framework of
sustainability for further computational analysis and simulation.

Soon after, I happened to encounter the book Beyond the Limit [3]. From
the book, I learned the existence of the STELLA software which constructed
the World3 model on Macintosh. I was amazed by its capability of being able
to build complicated models easily such as the World3 model presented in the
appendix of the book, and gradually became interested in the software which can
handle complex socio-economic dynamics without knowing computer languages
such as C and C++. The World3 model, I also learned from the book, turned
out to be an extension of the World Model originally developed by Jay Forrester
in his book World Dynamics [5]. The model was created by a computer software
called DYNAMO Compiler. Such dynamic modeling methodology, which had
been developed by Jay Forrester in 1960s at the Sloan School of Management,
MIT, is now widely called System Dynamics (SD) .

Mathematically speaking, system dynamics is a modeling algorism and method
by which dynamical systems of difference and differential equations are numer-
ically solved and solutions are easily visualized by a computer so that further
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analytical simulations are made possible. In this sense, SD can cover many
dynamic fields such as physics, chemistry, medicine, biology, ecology, business
management, economics, environment, etc.

Specifically, this turns out to be a good tool for social scientists, consultants
and business managers whose specialities are not computational sciences and
mathematics, but need dynamic modeling for the understanding of a complex
real world, because modeling dynamical systems becomes as easy as drawing a
picture on a canvas. Several softwares of system dynamics have been available,
running on personal computers, such as Dynamo, Stella, Vensim and Powersim.
Brief summaries of these four softwares are found in the Appendices of the book
Modeling the Environment [4]. The reader can also find more specific software
information easily on the Internet.

It was indeed fortunate for me to get familiarized with system dynamics.
Accordingly, using Vensim software in this paper, I was able to build a system
dynamics model of sustainability based on my framework discussed above. To
be specific, a macroeconomic growth model is employed as a starting point.
Then a meaning of sustainability is clarified by expanding the model step by
step from a simple macroeconomic growth model to a complicated ecological
model. In the due course sustainability is represented in terms of physical,
social and ecological reproducibilities. As an implementation of the analysis, it
is shown that a continued economic growth is unsustainable in the long run as
long as non-renewable resources are needed.

To make our modeling a little bit more analytical, a step-by-step procedure
of system dynamics modeling is developed from a viewpoint of a mathematical
system of difference equations. Through this procedure, essential concepts for
building a SD model would be better understood, such as the difference between
a moment and a period of time, a unit check, a computational procedure for
feedback loops, an expansion of boundaries, and a limit to an analytical math-
ematical model. Accordingly, at the end of the paper the reader will become
familiarized with a basic concept of system dynamics as well as sustainability.

The original draft was mostly written while I was visiting the Hawaii Re-
search Center for Futures Studies, University of Hawaii at Manoa in March
2001, at the invitation of its director, Dr. James Dator. Hawaii turned out to
be a good place for me to deeply consider sustainability. Since Hawaii became
the 50th US state in 1959, only less than a half century has passed. Yet, its
economy with rapidly increased 1.2 million islanders needs more than five mil-
lion tourists and their food annually for its survival, while dumping as much
garbage in its small islands. Can Hawaii be sustainable for the 21st century
and beyond? Why did the Easter Island in the southern Pacific Ocean sud-
denly collapse: overpopulation, lack of food, water and natural resources, wars,
epidemics ? The following sustainability model is developed with these naive
questions in mind.
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Table 1: Unknown Variables and Constants (1)

Category Symbol Notation Unit
Kt+1 Capital Stock machine

Unknown Yt Output (or Income) food/year
Variables Ct Consumption food/year

St Saving food/year
It Investment machine/year
v Capital-Output Ratio (= 4) machine/(food/year)

Constants c Marginal Propensity to Con-
sume (= 0.8)

dimensionless

Initial value Kt Initial Capital Stock (=400) machine

2 A Macroeconomic Growth Model

A step-by-step modeling of sustainability starts with a simple macroeconomic
growth model which can be found in macroeconomic textbooks. It consists of
the following five equations.

Kt+1 = Kt + It (Capital Accumulation) (1)

Yt =
1
v
Kt (Production Function) (2)

Ct = cYt (Consumption Function) (3)
St = Yt − Ct (Saving Function) (4)
It = St (Equilibrium Condition) (5)

Equation (1) represents a capital accumulation process in which capital stock
is increased by the amount of investment. Output is assumed to be produced
only by capital stock in a macroeconomic production function (2). The amount
of consumption is assumed to be a portion of output - a well-known macroeco-
nomic consumption function (3). Saving is defined as the amount of output less
consumption in (4). At the equilibrium investment has to be equal to saving as
shown in (5), otherwise output would not be sold out completely or in a state
of shortage.

These five equations become simple enough to describe a macroeconomic
growth process. Most of the symbols used in the above equations should be
familiar for economics and business students. Precise meaning of these variables,
however, are usually left unexplained in the textbooks. SD modeling, on the
other hand, requires precise specification of their units, as defined in Table 1,
without which it is impossible to construct a model. It is thus worth considering
these specifications in detail.
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Time

As emphasized in [10], it is fundamental in SD modeling to make a distinction
between two different concepts of time. One concept is to represent time as a
moment of time or a point in time, denoted here by τ ; that is, time is depicted
as a real number such that τ= 1, 2, 3, . . . . It is used to define the amount of
stock at a specific moment in time. The other concept is to represent time as
a period of time or an interval of time, denoted here by t, such that t = 1st,
2nd, 3rd, . . . , or more loosely t = 1, 2, 3, . . . . It is used to denote the amount
of flow during a specific period of time. Units of the period could be a second,
a minute, an hour, a week, a month, a quarter, a year, a decade, a century, a
millennium, etc., depending on the nature of the dynamics in question. In a
macroeconomic analysis, a year is usually taken as a unit period of time.

With these distinctions in mind, the equation of capital accumulation (1),
consisting of a stock of capital and a flow of investment, has to be precisely
described as

Kτ+1 = Kτ + It τ and t = 2001, 2002, 2003, · · · (6)

A confusion, however, might arise from these dual notations of time, τ and t, no
matter how precise they are. It would be better if we could describe stock-flow
relation uniformly in terms of either one of these two concepts of time. Which
one should, then, be adopted? A point in time τ could be interpreted as a limit
point of the interval of time t. Hence, t can portray both concepts adequately,
and usually be chosen.

When t is used to represent a unit interval between τ and τ +1, the amount
of stock Kt thus defined at the t-th interval could be interpreted as an amount
at the beginning point τ of a period t or the ending point τ + 1 of the period t;
that is,

Kt = Kτ Beginning amount of stock (7)

or

Kt = Kτ+1 Ending amount of stock (8)

When the beginning amount of the stock equation (7) is applied, a stock-flow
equation of capital accumulation (6) is rewritten as

Kt+1 = Kt + It t = 2001, 2002, 2003, · · · (9)

In this formula, capital stock Kt+1 is evaluated at the beginning of the period
t + 1; that is, a flow of investment It is to be added to the present stock value
of Kt for the evaluation of the capital stock at the next period.

When the ending amount of the capital stock equation (8) is applied, the
stock-flow equation (6) is rewritten as

Kt = Kt−1 + It t = 2001, 2002, 2003, · · · (10)
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Two different concepts of time - a point in time and a period of time - are
in this way successfully unified. It is very important for the beginners of SD
modeling to understand that time in system dynamics usually implies a period
of time which has a unit interval. Periods need not be discrete and could be
continuous. The beginning amount of capital accumulation (9) is employed here
as many macroeconomic textbooks do1.

Unit

In SD modeling, units of all variables, whether unknowns or constants, have to
be explicitly declared. In equation (5) of equilibrium condition,

investment is defined as an amount of machine per year, while saving is
measured by an amount of food per year. Therefore, in order to make the
equation (5) congruous, a unit conversion factor ξ of a unitary value has to be
multiplied such that

It = St ∗ ξ, (13)

in which ξ converts a food unit of saving to a machine unit of capital investment;
that is to say, it has a unit of machine/food dimension. This tedious procedure
of unit conversion could be circumvented by replacing machine and food units
with a dollar unit as many macroeconomic textbooks implicitly presume so.

Model Consistency

A model consistency has to be examined as a next step in SD modeling, following
time and a unit check. A model is said to be at least consistent if it has the same
number of equations and unknown variables. This is a minimum requirement for
any model to be consistent. The above macroeconomic growth model consists
of five equations with five unknowns and two constants. Thus, it becomes
consistent.

Let us now consider how these equations are computationally solved. Start-
ing with the initial condition of the capital stock Kt, numerical values are as-
signed from the right-hand variable to the left-hand variables as follows:

Kt → Yt → Ct → St → It → Kt+1 (14)

This is how computer can numerically solve the equations of our dynamic
macroeconomic model.

1To show the difference between stock and flow explicitly, it would be informative to
decompose the capital accumulation equation (1) as follows:

Kt+1 ≡ Kt + ∆Kt (Identity of Capital Stock Accumulation) (11)

∆Kt = It (Investment as a Flow of Capital) (12)
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Feedback Loop

There are two types of equations in our macroeconomic growth model. One
type is the equation of stock-flow relation which specifies a dynamic movement.
Capital accumulation equation (1) is of this type. The other type is the equation
of causal relation in which a left-hand variable is caused by right-hand variables
(and constants). The remaining four equations in the macroeconomic growth
model are of this type.

These two types are clearly distinguished in SD modeling as illustrated in
Figure 1. A stock-flow relation is illustrated by a rectangular box that is con-
nected by a double-lined arrow with a flow-regulating faucet, while a causal
relation is drawn by a single-lined arrow. Then, we can easily trace a loop of
arrows starting from a rectangular box and coming back to the same box. Such
a loop is called a feedback loop in system dynamics. A feedback loop, in this
way, has to include at least one stock-flow equation. Simultaneous equation
system, on the other hand, has only equations of causal relation and, accord-
ingly, cannot have feedback loops. Without a feedback loop, system cannot be
dynamic.

Capital

Investment

Output (Income)Consumption

Capital-Output Ratio
Marginal Propensity

to Consume

Saving

Initial Capital

Figure 1: Simple Macroeconomic Growth Model

A feedback loop is called positive if an increase in stock results in an increase
in a coming back stock, while negative if a decreased amount of coming back
stock results in. There are two feedback loops starting from the capital stock box
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in our macroeconomic model, and we can easily show that one loop is positive
and the other is negative. Only a negative feedback loop corresponds with a
computational trace of the equation (14). In this sense, SD diagram can be said
be more powerful tool than a system of equations for identifying causal loops.

A Steady State Equilibrium

Since SD modeling is by its nature dynamic, it is very important to find out a
steady state equilibrium for a structural consistency of the model. Steady state
implies that all stocks stop changing, which in turn means that the amount
of flows (to be precise, net flows) becomes zero. In other words, it is a state
of no growth. In our mode a steady state equilibrium of capital accumulation
is attained for Kt+1 = Kt. To calculate the steady state analytically, five
equations of the model have to be first reduced to a single equation of capital
accumulation:

Kt+1 =
(

1 +
1− c

v

)
Kt. (15)

Then, a steady state is easily shown to exit for c = 1; that is, the amount
of output is all consumed and no saving is made available for investment. In
our numerical example, a steady state equilibrium is attained at the values of
K∗ = 400, Y ∗ = C∗ = 100, and S∗ = I∗ = 0.

Simulation for an Economic Growth

Let us try to drive the economy out of this steady state equilibrium. A growth
path can be easily found by setting “a marginal propensity to consume” to be
less than unitary; say, c = 0.8. Then 20% of output (or income) is saved for
investment, which in turn increases the capital stock by the amount of 20, which
then contributes to the increase in output by 5 next period, driving the economy
toward an indefinite growth. Table 2 shows how capital, output, consumption
and investment grow at a growth rate of 5% for c = 0.8.

Let us consider another growth path in which maximum amount of saving
is made first at the cost of consumption, then, by accumulating capital stock
as fast as possible, a higher level of consumption is enjoyed later. This type of
growth path can be built by making “a marginal propensity to consume” as a
function of a normalized output level such that

c = c(Yt/Ynorm) (16)
where Ynorm is a normalized reference level of output with which a current
level of output is compared. Usually an initial value of output is selected as a
reference level: Ynorm = Yinitial = 100. This function is called a table function,
or a graphic function, or a lookup function in SD modeling.

A simple example is the following linear function as illustrated in Figure 2:

c = 0.4
Yt

Yinitial
+ 0.2 (17)
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Table 2: Macroeconomic Growth Model

Year Capital Output Consump- Invest-
tion ment

2001 400.00 100.00 80.00 20.00
2002 420.00 105.00 84.00 21.00
2003 441.00 110.25 88.20 22.04
2004 463.04 115.76 92.61 23.15
2005 468.20 121.55 97.24 24.31
2006 510.51 127.62 102.10 25.52
2007 536.03 134.00 107.20 26.80
2008 562.84 140.71 112.56 28.14
2009 590.98 147.74 118.19 29.54
2010 620.53 155.13 124.10 31.02

1

0.9

0.8

0.7

0.6

1

1.25 1.50 1.75 2

Figure 2: A Table Function of A Marginal Propensity to Consume

In the beginning “marginal propensity to consume” is set to be the lowest (or
a subsistence) level, say, c(1) = 0.6, to allow for a maximum growth rate, then
it gradually becomes higher as income increases, enabling more consumption.
When income level doubles, we have c(2) = 1 and no further saving and in-
vestment are made; that is, a maximum consumption level is enjoyed. Figure 3
illustrates a gradual increase in the value of “marginal propensity to consume”
and a gradual decrease in the growth rate.

Building up a table function implies connecting the variable Output by a
single-lined arrow to the constant Marginal Propensity to Consume in Figure 1.
And an exogenous constant of “marginal propensity to consume” which has been
residing outside the model now becomes an endogenous unknown variable whose
value is to be determined by the behavior of the model itself. Better modeling
is to reduce the number of constants and make a model self-determined by
itself without relying on the exogenous values of constants. In this sense, a
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Figure 3: Growth Rate and Marginal Propensity to Consume

capability of introducing table functions is one of the most powerful features
in SD modeling. In fact, an introduction of nonlinear and/or numerical table
functions enables many diversified dynamic behaviors for analytical simulations.

DISCUSSIONS FOR THE SECTION:

(a - i) Identify two feedback loops in Figure 1, and tell which is positive or
negative.
(a - ii) Write down Vensim equations of the Simple Macroeconomic Growth
Model by referencing to the equations (1) - (5) and those in the Appendix. By
doing so, you will be able to identify two types of equations discussed above
more clearly. Stock-flow relation is generically written in Vensim as

Stock = INTEG (Inflow - Outflow, Initial Value)

(b) Derive the equation (15). Then consider the meaning of a steady state
equilibrium.

(c) What will happen if a consumption level drops and “marginal propensity
to consume” becomes, say, c = 0.7. Calculate new levels of Capital, Output,
Consumption and Investment, and fill in the columns in Table 2.

3 Physical Reproducibility

Sustainability

In the above macroeconomic growth model, depreciation of capital stock is
not considered, or It is regarded as net investment. In reality, capital stocks
depreciate, and, for maintaining the current level of output, some portion of the
income has to be saved to replace the depreciation. When a depreciation rate is
high, a higher portion of income has to be saved at the cost of the consumption.
Here arises a sustainability issue of the economy: how to maintain a level of
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income for sustainable development. In this sense a sustainability issue has
been as old as human history.

After the UN Conference on Environment and Development (UNCED),
widely known as the Earth Summit, in Rio de Janeiro, Brazil, 1992, sustain-
able development becomes a fashionable word in our daily conversations. This
might be an indication that our awareness on environmental crises such as global
warming, acid rain, depletion of the ozone layer, tropical deforestation, deser-
tification, and endangered species has deepened. How should, then, a state of
sustainable development be defined? Some proposed definitions are the follow-
ing:

Sustainable development is development that meets the needs of the
present without compromising the ability of future generations to
meet their own needs. [7, p.43].

The simplest definition is: A sustainable society is one that can per-
sist over generations, one that is far-seeing enough, flexible enough,
and wise enough not to undermine either its physical or its social sys-
tems of supports. (Italic emphases made by the author) [3, p.209].

These definitions are articulated so as to be understood even by children. How-
ever, from an economist’s point of view, these definitions lack an interrelated
view of production, consumption, society and environment.

Sustainability is comprehensively defined when all activities in economy,
society and nature are interpreted as reproduction processes; that is, in terms
of physical, social and ecological reproducibility [9]. A merit to this approach is
that an economic structure of reproduction processes such as constructed in the
general equilibrium framework [8] can be applied, since the most basic activity in
any society is a reproduction process in which inputs are repeatedly transformed
into outputs for consumption and investment each year. Hence, sustainability is
similarly presented here as an economic process of physical, social and ecological
reproduction step-by-step. In this way the interrelationship between economic
activities and environment is integrated wholistically.

Capital Depreciation

Let us introduce depreciation in the macroeconomic growth model. The equa-
tion of capital accumulation (1) is expanded as follows:

Kt+1 = Kt + It −Dt (Capital Accumulation) (18)
Dt = δKt (Capital Depreciation) (19)

As Figure 4 shows, this can be easily done in SD modeling by adding an out-
flow arrow of depreciation from the capital stock. It in equation (18) is now
reinterpreted as gross investment.
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Table 3: Unknown Variable and Constant Added (2)

New Variable Dt Depreciation machine/year
New Constant δ Depreciation Rate (=0.02) 1/year

Physical reproducibility implies that gross investment is greater than or
equal to the depreciation.

It −Dt ≥ 0 [Physical Reproducibility] (20)

The macroeconomic growth model with depreciation, which is here called phys-
ical reproducibility model, now consists of six equations with six unknown vari-
ables: Kt+1, Yt, Ct, St, It, Dt and three constants: v, c, δ .

Capital

Investment

Output (Income)Consumption Capital-Output Ratio

Marginal Propensity

to Consume

Saving

Initial Capital

Non-Renewable

Resources
Raw Material

Raw Material

Input Rate

Initial Non-Renewable

Resources

Depreciation

Depreciation Rate

Figure 4: Physical Reproducibility Model

A Steady State Equilibrium

A steady state equilibrium is attained at Kt+1 = Kt or It = Dt, as easily shown
from the equation (18). To obtain the steady state analytically, all equations in
the model have to be reduced to a single capital accumulation equation:
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Kt+1 =
(

1 +
1− c

v
− δ

)
Kt. (21)

A steady state condition is then easily obtained as follows (asterisks are added
to the constants that meet this condition):

1− c∗

v∗
= δ∗ (22)

At the steady state, “marginal propensity to consume” becomes less than uni-
tary; c∗ = 1−δ∗v∗ < 1, which implies that a portion of output has to be saved to
replace the capital depreciation. One possible combination of numerical values
for the steady state is (v∗, c∗, δ∗) = (4, 0.8, 0.05).

Simulation for an Economic Growth

For the economy to grow out of the steady state; that is, Kt+1 > Kt, at least
one of the following three actions has to be taken.

(1) Increase productivity ( 1
v > 1

v∗ ) or v < v∗ .
(2) Decrease consumption (or increase saving and investment) c < c∗ .
(3) Improve capital maintenance δ < δ∗ .

8,000 machine

2,300 food/Year

4,000 machine

1,150 food/Year

0 machine

0 food/Year

2001 2026 2052 2077 2102

Time (Year)

Capital : macro growth machine

"Output (Income)" : macro growth food/Year

Consumption : macro growth food/Year

Investment : macro growth food/Year

Figure 5: A Simulation for Economic Growth

As one such numerical example, let us take the case (3) and reset the rate
of depreciation at δ = 0.02 from δ∗ = 0.05. In this case, an economic growth
becomes 3%. As Figure 5 illustrates, during the 21st century capital stock
keeps increasing from K2001 = 400 to K2101 = 7, 687 and so does output from
Y2001 = 100 to Y2101 = 1, 921, more than 19 folds! Can such a growth be
sustainable?
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Non-Renewable Resource Availability

The physical reproducibility condition (20) presupposes an availability of non-
renewable natural resources which is represented by the following equation:

Rt+1 ≡ Rt −∆Rt (Non-Renewable Resource Depletion) (23)
∆Rt = λYt (Non-Renewable Raw Material Input) (24)

For simplicity, let us assume that non-renewable resources are represented by
fossil fuels such as coal, gas, and oil whose units are uniformly measured by
a ton. Then, λ is interpreted as an input amount of fossil fuels necessary for
producing a unit of output.

Table 4: Unknown Variable and Constant Added (3)

New Variable Rt+1 Non-Renewable Resource ton
New Constant λ Raw Material Input Rate

(=0.05)
ton/ food

Initial value Rt Initial Non-Renewable Re-
source (=1,00)

ton

Assuming that equations (23) and (24) are reduced to one equation, we have
now seven equations for seven unknown variables and four constants. Hence the
model is shown to be consistent.

Let us next consider the existence of a steady state equilibrium. There are
two state variables Kt+1 and Rt+1 in the model. A steady state of capital
accumulation is not affected by the introduction of non-renewable resources,
while a steady state of non-renewable resources implies Rt+1 = Rt, which in
turn means ∆Rt = λYt = 0 or Yt = 0. On the other hand, a steady state
equilibrium of capital stock implies a positive amount of output; that is, Yt > 0.
A contradiction arises! Hence it is concluded that a macroeconomic growth
model with non-renewable resources cannot have a steady state equilibrium
by its nature. To make the model feasible, the existence of a steady state
equilibrium of non-renewable resources has to be conceptually given up. Or,
non-renewable natural resources have to be assumed to be available at any time
in the economy so that the earth’s limited source of non-renewable resources is
not depleted; that is,

∞∑
t=2001

∆Rt < R2001 [Non-Renewable Resource Availability] (25)

Simulation for Sustainability

Non-renewable resources are continuously deleted even at a steady state equi-
librium of capital accumulation, contrary to a general belief that they are not
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in a non-growing economy.

 

1,000

750

500

250

0

2001 2026 2052 2077 2102

Time (Year)

"Non-Renewable Resources" : dep.rate=5% ton

"Non-Renewable Resources" : dep.rate=2% ton

Figure 6: Depletion of Non-Renewable Resources

At the steady state equilibrium set by the condition (22), as Figure 6 illus-
trates, the initial non-renewable resources R2001 = 1, 000 constantly diminishes
by one half a century later; that is, R2101 = 500. This can be easily examined
by a simple calculation. Since the economy is at the steady state, the output
level remains constant at Yt = 100. Hence, ∆Rt = λYt = 0.05 ·100 = 5 and non-
renewable resources are depleted by five tons every year. Over a century they
will be depleted by 500 tons. It is very important, therefore, to understand that
a steady state equilibrium is not sustainable in the long run. In fact, a simple
calculation shows that non-renewable resources will be totally exhausted over
two centuries; that is, by the year 2201 we will have R2201 = 0.

To show how fast non-renewable resources deplete under a growing economy,
a depreciation rate is reset again to δ = 0.02 and the economy starts growing at
the rate of 3%. In this case, non-renewable resources will be totally depleted in
the year 2066; that is, at the beginning of the next year we will have R2067 =
−5.813, as Figure 6 illustrates.

How can we circumvent such a faster depletion of non-renewable resources
and stay within a limit to resource availability and physical reproducibility?
First, an efficient use of non-renewable natural resources has to be invented.
For this, an introduction of long-term management of resources will be nec-
essary. Second, substitutes for non-renewable resources have to be discovered
or newly invented through technological breakthroughs. For this, research and
development of new technology have to be oriented toward this direction. The
issue of substitutes for non-renewable resources will be more fully analyzed in
the next section.

Feedback Loop for Non-Renewable Resource Availability

What will happen if the development of substitutes are delayed or failed?
To overcome a diminishing non-renewable resources, two self-regulating forces
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might appear in the economy. The first and more direct force is to curb down
a raw material input rate λ. In a market economy, this might emerge as an
increase in prices of non-renewable resources so that their use will be regulated.
In SD modeling, this self-regulating force can be easily implemented by draw-
ing an arrow from a stock of non-renewable resources to a constant of the raw
material input rate λ and defining a table function as follows:

λ = λ

(
Rt

Rinitial

)
(26)

The second and more indirect force might appear as a reduction of pro-
ductivity as non-renewable resources begin to be exhausted. In other words, a
productivity which is defined as 1

v might begin to slide down. In SD modeling,
this self-regulating force can be easily implemented by drawing an arrow from
non-renewable resources to a capital-output ratio and defining a table function
as follows:

v = v

(
Rt

Rinitial

)
(27)

The second force of self-regulation is considered here as an example of the
effect of diminishing non-renewable resources on the economy. Let us assume
that a productivity is not affected until non-renewable resources are depleted
up to 40%. Then it begins to decrease as non-renewable resources continue
to be depleted. Table 5 indicates one such numerical example of diminishing

Table 5: A Table Function of Capital-Output Ratio
Rt/Rinitial 0 0.1 0.2 0.3 0.4 0.5 0.6 - 1

v 20 16 12 8 6 5 4

productivity (or an increasing capital-output ratio).
Figure 7 illustrates the effect of such self-regulating forces. Output level

attains its highest peak in the year 2043; Y2043 = 337.53, then begins to decrease.
In the year 2093, the output level becomes less than its initial output level;
Y2093 = 98.15 < Y2001 = 100. Apparently at this lower level of output the initial
number of population would not be sustained. In other words, non-renewable
resource availability and population growth become a serious trade-off, and
either the preservation of non-renewable resources or population growth has to
be sacrificed in the long run. To see this trade-off relation of sustainability more
explicitly, the equation of population growth has to be brought into the model,
which will be done in the next section.

DISCUSSIONS FOR THE SECTION:

(a) Two concepts of sustainability are quoted in this section. Try to explain
what is meant by these concepts in your own words, and see if your friends can
understand your explanation.

(b) Three cases are identified for the economy to grow out of the steady state,
and only the case (3): Improve capital maintenance, is considered in detail. Try
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Figure 7: Physical Reproducibility with Non-Renewable Resources

to analyze the remaining two cases by drawing up-arrow or down-arrow for the
variables that might be caused to be increased or decreased as constants v, c
change in Figure 4: Physical Reproducibility Model.

(c) When non-renewable resources begin to be depleted, two possible feedback
loops or self-regulating forces are pointed out to emerge. A direct force is to
curb the raw material input rate of λ, while an indirect force is to influence a
capital-output ratio v or productivity. Pick up some examples of non-renewable
resources such as oil, and discuss what kind of self-regulating forces might appear
in reality as such resources begin to be depleted.

4 Social Reproducibility

To consider social reproducibility as a next step of sustainability, population
growth is now embodied in the model as follows:

Nt+1 ≡ Nt + ∆Nt (Population Growth) (28)
∆Nt = αNt − βNt (Net Birth = Birth - Death) (29)

Notations of new variables and constants are shown in Table 6.
For a survival of any society a minimum amount of consumption has to be

at least produced each period to reproduce its population. This amount needs
not be a subsistence amount, but has to be enough “to maintain the minimum
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Table 6: Unknown Variables and Constants Added (4)

New Variables Nt+1 Population person
Lt Workers (Labor Force) person
α Birth Rate (= 0.03) 1/year
β Death Rate (= 0.01) 1/year

New Constants θ Participation Ratio to Labor
Force(= 0.6)

dimensionless

` Output-Labor Ratio (= 0.4) (food/year)/person
c Minimum Standards of Con-

sumption (= 0.16)
(food/year)/person

Initial value Nt Initial Population (=500) person

standards of wholesome and cultured living (Article 25, The Constitution of
Japan).” Let c be such minimum standards of consumption per capita. Then,
a total amount of consumption defined in the consumption function (3) has to
be replaced with the following:

Ct = cNt (Minimum Standards of Consumption) (30)

With the introduction of the minimum standards of consumption that is
demanded irrespective of the output level, the amount of saving defined in
the saving function (4) might become negative as population and consumption
increase. To warrant a non-negative amount of saving, the saving function has
to be technically revised as follows:

St = Max{Yt − Ct, 0} (Non-Negative Saving) (31)

Social reproducibility is now defined as a reproduction process in which
minimum standards of consumption is always secured out of the net output2;
that is,

Yt −Dt − cNt ≥ 0 [Social Reproducibility] (33)

Note that whenever this social reproducibility condition is met, physical repro-
ducibility (20) also holds; that is,

It = St = Yt − Ct = Yt − cNt ≥ Dt (34)

2To be precise, a unit of depreciation (machine/year) has to be converted to a unit of food
(food/year) as follows:

Yt −Dt/ξ (32)

as in the equation (13)
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With the introduction of population, the number of workers or labor force
is easily defined as a portion of the population:

Lt = θNt (Workers) (35)

Production function (2) is then replaced with the following revised production
function which allows an inclusion of labor force explicitly as a new factor of
production3.

Yt = Min{1
v
Kt, `Lt} (Production Function) (37)

A Steady State Equilibrium

Our macroeconomic growth model is now getting a little bit complex. From
the tables of unknown variables and constants (1) through (4), nine unknown
variables and nine constants are enumerated for nine equations. Therefore, the
model is shown to be consistent.

Let us now consider a steady state equilibrium. There are three variables of
stocks such as capital, population and non-renewable resources; Kt+1, Nt+1, Rt+1.
A steady state of population growth Nt+1 = Nt is attained when a birth rate
is equal to a death rate; say, α∗ = β∗ = 0.01. Meanwhile, as already mentioned
above, no steady state equilibrium is possible for non-renewable resources Rt+1.
As to a steady state of capital stock Kt+1, two cases of steady state equilibria
may emerge due to the introduction of the new production function (37).

(1) A case in which output is constrained by capital stock: Yt = 1
v Kt. In

this case, from a simple calculation we have

Kt

Nt
=

c
1
v − δ

= 0.8 (38)

for a depreciation rate of δ = 0.05. When Nt = 500, capital stock has to be Kt =
400 at the steady state. Hence, a steady state equilibrium is summarized as
(K∗, N∗, Y ∗, C∗, S∗, I∗) = (400, 500, 100, 80, 20, 20), except that non-renewable
resources keep depleting by the amount of five tons every year as analyzed
under the previous section of physical reproducibility. When Kt < K∗, the
capital stock continues to be reduced to zero, while if Kt > K∗, it tends to
converge to 800 – another steady state to be discussed below. In this sense, this
steady state is said to be unstable at a critical value of K∗ = 400.

3Alternatively, a neoclassical production function such as a Cobb-Douglas production func-
tion can be used without any difficulty in SD modeling as follows:

Yt = AKa
t L1−a

t (36)
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Figure 8: Social Reproducibility Model

(2) A case in which output is constrained by workers: Yt = `Lt. In this case,
we have

Kt

Nt
=

θ`− c

δ
= 1.6 (39)

for the same depreciation rate of δ = 0.05. When Nt = 500, capital stock this
time has to be Kt = 800 at the steady state. Hence, a steady state equilibrium
is summarized as (K∗, N∗, Y ∗, C∗, S∗, I∗) = (800, 500, 120, 80, 40, 40). When
Kt > 400, the capital stock tends to converge to this steady state of K∗ = 800
from below or above. In this sense, this steady state is said to be stable.

Neoclassical Golden Rule of Capital Accumulation

The above analysis of steady state of capital stock is attained against the steady
state of population. How are these two steady state equilibria modified when
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population changes? To figure out these relations analytically, let us introduce a
neo-classical concept of per capita capital stock, which is defined as kt = Kt/Nt.
And let n(= α − β) be a net growth rate of population. Then the above eight
equations, except for the non-renewable resources, are very compactly reduced
to a single equation. To do so, the equation (18) is first rewritten as

Kt+1

Nt+1

Nt+1

Nt
=

Kt

Nt
+

(
Yt

Nt
− Ct

Nt

)
− δ

Kt

Nt
(40)

A simple calculation, then, results in the following capital growth equation.

kt+1 = kt +
1

1 + n

(
Min{1

v
kt, θ`} − c− (n + δ)kt

)
(41)

A steady state equilibrium is obtained at kt+1 = kt, which in turn yields two
equilibrium levels of per capita capital.

For a smaller level of equilibrium we have

k =
c

1
v − (n + δ)

(42)

This corresponds to the previous case in which output is constrained by capital
stock (38). For a larger level of equilibrium we have

k∗ =
θ`− c

n + δ
(43)

This corresponds to the previous case in which output is constrained by the
number of workers (39). Note that even at a steady state of per capita equilib-
rium, population is allowed to grow at a net growth rate of n > 0.

It is easily shown that k is an unstable state of equilibrium, since kt+1 < kt

for kt < k, and kt+1 > kt for k < kt < k∗. Thus, per capita capital kt is, once
displaced with the equilibrium, shown to decrease toward zero or converge to
k∗. Meanwhile, k∗ is a stable state of equilibrium, since kt+1 < kt for kt > k∗.

kt −→
{

0, if kt < k

k∗, if kt > k
(44)

Let us examine the stability of per capita capital numerically by allowing the
economy to grow out of the initial steady state equilibrium. Depreciation and
birth rates are now reset to (δ, α) = (0.02, 0.03) so that both capital stock and
population are allowed to start growing. It is then calculated that k = 0.7619
and k∗ = 2. Since the initial population is 500, an unstable equilibrium level of
initial capital stock is obtained as K2001 = kN2001 = 380.95. This means that if
the initial capital stock is less than this amount, per capita capital stock tends
to diminish toward zero, and the economy will get stuck eventually. Figure 9
numerically illustrates that when K2001 = 380 (and k2001 = 0.76) per capita
capital decreases to k2100 = 0.0296, and eventually to zero.

20



2

1.5

1

0.5

0

2001 2026 2052 2077 2102

Time (Year)

Per Capita Capital : for K=380 machine/person

Per Capita Capital : for K=381 machine/person

Figure 9: Golden Rule of Capital Accumulation

On the other hand, if the initial capital stock is greater than this amount,
per capita capital tends to converge towards a so-called golden-rule level of
capital in neoclassical growth theory [1]. Figure 9 also illustrates that when
K2001 = 381(and k2001 = 0.762) per capita capital increases to k2100 = 1.898,
and eventually converges to a golden rule level of capital: k∗ = 2.

It is interesting to know that only one unit difference of capital stock in our
numerical example will result in a big difference in its growth path. When the
initial capital stock is K2001 = 380, the economy will be destined to be trapped
forever to a stagnant state, while an additional unit of capital stock will drive
the economy up to its prosperity. The importance of an initial level of capital
stock for an economic development is a well recognized feature in development
economics. To circumvent the situation of this economic trap, the initial capital
stock is set so far to K2001 = 400 in our numerical example.

From now on let us reset the initial value of capital stock, without losing
generality, at its critical value of K2001 = 381. Figure 10 illustrates how capital
stock, population, output, consumption and investment grow simultaneously.
Population grows at 2%, so does minimum standards of consumption regardless
of the growth of capital stock and output level. Output is first constrained by
the availability of capital stock, then from the year 2042, it is constrained by the
availability of workers, which is in turn constrained by the population growth.
Thus, the economy continues to grow at an increasing rate as the capital stock
grows up to the year 2042 (from 2% to 5%), then it grows at a constant rate
of population growth of 2% . This is why there are some bumps on the output
and investment growth paths around 2042.

Even at this growth rate of population, output level is still maintained at
a higher level than minimum standards of consumption so that social repro-
ducibility is constantly sustained. Eventually, per capital capital growth will
converge to a steady state of k∗, showing a long-run stability of capital accumu-
lation. This is what is meant by a neoclassical economic growth of golden rule:
a very elegant and optimistic theory of economic growth!
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Figure 10: Golden Rule of Economic Growth

Can such a growth be sustainable in the long run, indeed? The answer
would be yes as long as non-renewable resources are disregarded and left out of
the model. Remembering, however, that neoclassical concept of a steady state
allows a constant growth rate of 2% , and the economy still keeps growing, de-
pleting non-renewable resources, the answer would be absolutely no. In fact,
non-renewable resources will be totally depleted in the year 2077 in our numer-
ical example and become negative for the next year; that is, R2078 = −13.31.
Even so, neoclassical growth theory keeps silent about this point, giving the
impression that our macroeconomy can continue to grow and be stable in the
long run.

Feedback Loop for Non-Renewable Resource Availability

Availability of non-renewable resources is now taken into consideration. To
make non-renewable resources available for future generations, let us introduce
a similar feedback mechanism as implemented in the previous section of physical
reproducibility; that is, as the non-renewable resources continue to be depleted,
productivity becomes worsened, and accordingly output is curbed, resulting in
preserving non-renewable resources. Two constants in the production function
(37) could influence productivity separately; that is, capital-output ratio v and
output-labor ratio `. Instead of the two constants being affected separately, we
introduce a table function that affects output level directly such that

Yt = Productivity
(

Rt+1

Rinitial

)
Min{1

v
Kt, `Lt} (Production Feedback) (45)
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Figure 11: Social Reproducibility Feedback Model

The table function of productivity is defined in Table 7. It is assumed that
productivity is not affected until non-renewable resources are depleted up to
40% , beyond which, then, it begins to decrease gradually. Figure 11 illustrates
a revised feedback loop for non-renewable resources.

As expected by the introduction of a productivity feedback loop, Figure 12
shows how growth paths of capital stock and net output (output less depreci-
ation) are curved as non-renewable resources continue to be depleted. In this
way non-renewable resources are to be preserved.

Feedback Loop for Social Reproducibility

Figure 12 also illustrates that population continues to increase exponentially
at a net growth rate of 2% , so does a minimum amount of consumption for
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Table 7: A Table Function of Productivity
Rt+1/Rinitial 0 0.1 0.2 0.3 0.4 0.5 0.6 - 1
Productivity 0 0.1 0.2 0.4 0.6 0.8 1
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Net Output : feedback food/Year
Consumption : feedback food/Year
"Non-Renewable Resources" : feedback ton

Figure 12: Golden Rule with Non-Renewable Resource Feedback

maintaining a per-capita standards of wholesome and cultured living: Ct =
cNt. Since net output is curved by a negative feedback loop of non-renewable
resources, social reproducibility condition (33) will be eventually violated, and
a portion of the population might be forced to be starved to death.

The violation of social reproducibility implies

Yt −Dt − cNt < 0. (46)

In our numerical example, this occurs in the year 2057 when C2057 = 242.49 and
Y2057−D2057 = 234.33, so that consumption exceeds net output by the amount
of 8.16 as roughly illustrated in the Figure 12. The violation of social repro-
ducibility implies that a smaller amount of net output has to be shared among
people, forcing their level of living standards to be reduced. How far can such
a per capita consumption be lowered? For maintaining physical reproducibility,
it is desirable to keep its level at which per capita consumption is equal to per
capita net output. It would be imaginable, however, that starving people would
eat up everything available out of the output, including the reserved amount of
capital stock for depreciation.

Reflecting the situation of such food shortage, per capita consumption has
to be recalculated as follows4:

4On the other hand, for maintaining the physical reproducibility, the equation of per capita
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Per Capita Consumption = Min
(

c,
Yt

Nt

)
. (48)

This formula enables per capita consumption to be lowered from the level of
c = 0.16. A decrease in per capita consumption may increase a death rate
due to food shortage. This could happen unevenly among weaker people and
children, or among countries whose economy is not wealthy enough to buy food,
or among countries that are politically weaker and can be neglected. A table
function of death rate in Table 8 is created to reflect such imaginable situations.
For instance, whenever a per capita consumption is reduced by half from the

Table 8: A Table Function of Death Rate
Per Capita Consumption c = 0.16 0.14 0.12 0.1 0.08 0.06 0.04

Death Rate β 0.01 0.015 0.02 0.03 0.05 0.07 0.1

original minimum standards, a death rate is assumed to jump to 5% from 1%
. In this way, a negative feedback loop of social reproducibility is completed.
Figure 11 illustrates a revised feedback version of social reproducibility model.
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Consumption : feedback2 food/Year
"Non-Renewable Resources" : feedback2 ton

Figure 13: Growth Paths with Social Reproducibility Feedback

Calculated from the revised feedback model, Figure 13 illustrates revised
growth paths, reflecting the effect of the feedback loop relation to the death

consumption has to be changed to the following:

Per Capita Consumption = Min

„
c,

Yt −Dt

Nt

«
. (47)
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rate. The amount of consumption exceeds net output during the year 2056, and
accordingly capital stock begins to decay. The difference between consumption
and net output is the amount of capital depreciation that is allowed to be
consumed by hungry people.

A century later, output level becomes only one quarter of its initial level;
that is, Y2101 = 25.71 from Y2001 = 95.25. Population is almost pulled back to
its original level of N2001 = 500; that is, it increases to its peak at N2069 = 1, 793,
then begins to decline to N2101 = 541.51. Per capita consumption level has been
maintained at c = 0.16 until the year 2059, then begins to decline to the level
of 0.0474 in the year 2101 (a 70% decrease !), and the death rate jumps up to
almost 10 %. In this way, all economic activities will be trapped. Is there a way
to escape from this economic trap?

Substitutes for Non-Renewable Resources

The economic trap mentioned above is basically caused by a diminishing avail-
ability of non-renewable resources. To see the effect, let us modify the equation
of non-renewable resource depletion (23) so that it allows an inflow of substitutes
for non-renewable resources. Let SUt be an inflow amount of non-renewable

Table 9: Unknown Variable and Constant Added (5)

New Variable SUt Non-Renewable Substitutes ton/year
New Constant ν Level of Substitutes (0 ≤ ν <

1)
dimensionless

ρ Output-Substitutes Ratio
(=1)

food/ton

substitutes, measured by a unit of ton/year, that can be added to the stock of
non-renewable resources, and ν be a level of the substitutes such that 0 ≤ ν < 1.
Then the equation (23) is replaced with the following:

Rt+1 = Rt + SUt −∆Rt (Non-Renewable Resource Depletion) (49)
SUt = ν∆Rt (Substitutes for Non-Renewable Input) (50)

Or, combining these two, we have

Rt+1 = Rt − (1− ν)∆Rt (Non-Renewable Resource Depletion) (51)

Where do the substitutes come from? For simplicity it is assumed that they
are converted from the output by a factor of output-substitutes ratio. Saving
function (4) then has to be revised as follows:

St = Yt − Ct − ρSUt (52)
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Figure 11 illustrates the SD modeling implementation of the substitutes for
non-renewable resources.

Several simulations are done, under such circumstances, to attain the growth
paths of the golden rule of capital accumulation illustrated in Figure 10. It
turned out that at least 400 unit machines of initial capital stock are needed,
for a 80% level of substitutes, to drive an economic growth initially. So the initial
capital stock is reset again to K2001 = 400. Even so, if a level of substitutes is set
higher than 80%, the economy again turns out to be trapped. This is a little bit
surprising result, because a higher rate of substitutes is supposed to preserve the
non-renewable resources. A moment of thought clarifies the reason. A higher
level of substitutes subtracts more portion of output, and capital accumulation
begins to decline with less saving and investment.

On the other hand, a lower level of substitutes depletes non-renewable re-
sources faster, reducing productivity and output. Again, the economy is trapped
somewhere in the middle, and cannot attain the golden rule growth paths over
the entire 21st century. Only when a level of substitutes is 80%, the economy
can recover from the economic trap that is caused by a negative feedback loop
of non-renewable resources as illustrated in Figure 13, and once again begin to
attain the growth paths of golden rule for the entire 21st century. Figure 14
illustrates such golden rule growth paths up around the turn of the 21st century.
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0 ton

2001 2035 2068 2102 2135 2169 2202

Time (Year)
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Net Output : substitutes food/Year
Consumption : substitutes food/Year
"Non-Renewable Resources" : substitutes ton

Figure 14: Social Reproducibility Economic Trap in the Long Run

However, this is nothing but postponing a problem of economic trap to the
22nd century. Moreover, there will be no way to escape from the economic trap
in the 22nd century, no matter how Output-Substitutes Ratio is reduced and
saving and investment is restored. Figure 14 shows exactly the same structure as
in the Growth Paths with Social Reproducibility Feedback in Figure 13, except
that a time scale is elongated over two centuries in the present case. Substitutes
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of non-renewable resources cannot be an economic savior in the long run.

DISCUSSIONS FOR THE SECTION:

(a) Refer to microeconomics textbooks and discuss how production activities
can be described under different production functions such as the equations
(36) and (37). Advanced reader may replace the production function (37) with
a Cobb-Douglas production function (36) in the Social Reproducibility Model
(Figure 13 ) and continue simulation analysis similarly.

(b) Derive the capital growth equation (41), and, by using the equation, show
how kt converges to two different points. It will be helpful for understanding
this convergence movement intuitively if you draw the diagram of the items in
the parenthesis of the equation (41) separately.

(c) With the introduction of the Table Function of Death Rate in Table 8, it
is briefly assumed that a food shortage will eventually increase a death rate.
Discuss in reality how food shortage will affect people and countries world wide
unevenly.

5 Ecological Reproducibility

Production and consumption activities as well as capital accumulation formal-
ized above produce as by-products consumer garbage GCt, industrial wastes GYt

and capital depreciation dumping GKt. These by-products are in turn dumped
into the earth or scattered around atmosphere and accumulated as an artificial
environmental stock called sink SKt+1. Some portion of the sink will be natu-
rally regenerated (or recycled) and made available as renewable resource stock
that is called source SRt+1. As a typical example, we can refer to photosynthe-
sis processes in which tropical forests and trees grow by taking carbon dioxides
(industrial wastes) as inputs and producing oxygen as by-product output.

These three dumping processes together with an extracting process of non-
renewable resources now form an entire global environment Env, consisting of
the earth’s sink and source. Hence, the formation of the entire global environ-
ment might be appropriately considered as an ecological reproduction process
which is symbolically illustrated as:

(ª∆Rt ⊕GCt ⊕GYt ⊕GKt) =⇒ Env(SKt+1 → SRt+1). (53)

To describe such an ecological reproduction process, we need to add the
following seven equations.
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SKt+1 ≡ SKt + ∆SKt (Accumulation of Sink) (54)
∆SKt = GCt + GYt + Gkt − (ε + µ)SKt (Net Change in Sink) (55)

GCt = γcCt (Consumer Garbage) (56)
GYt = γyYt (Industrial Wastes) (57)
GKt = γkDt (Depreciation Dumping) (58)

SRt+1 ≡ SRt + ∆SRt (Accumulation of Source) (59)
∆SRt = (ε + µ)SKt − λ1Yt (Net Change in Source) (60)

Table 10: Unknown Variables and Constants Added (6)

SKt+1 Sink source
New SRt+1 Source source

Variables GCt Consumer Garbage source/year
GYt Industrial Wastes source/year
GKt Capital Depreciation Dump-

ing
source/year

ε Natural Rate of Regeneration
(= 0.15)

1/year

µ Recycling Rate (= 0.05) 1/year
New λ1 Renewable Raw Material In-

put Rate (= 0.6)
source/food

Constants γc Garbage Rate(= 0.5) source/food
γy Industrial Wastes Rate (=

0.1)
source/food

γk Depreciation Dumping Rate
(= 0.5)

source/machine

Initial values SKt Initial Sink (=300) source
SRt Initial Source (=3,000) source

In order for an ecological reproduction process to continue, total amount of
consumer garbage, industrial wastes and capital depreciation dumping have to
be less than the earth’s ecological capacity to absorb and dissolve the sink, and
those newly regenerated source have to add enough amount to renewable source
for continued production activities. Otherwise, the amount of sink begins to
accumulate, and the accumulated sink will eventually cause the environment
to collapse, or renewable source will be completely depleted. Therefore, for a
sustainable ecological reproducibility, the following two conditions have to be
met.
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Figure 15: Ecological Reproducibility Model

∞∑
t=2001

(GCt + GYt + GKt) ≤ ε

∞∑
t=2001

SKt+1 [Ecological Reproducibility]

(61)

SRt+1 > 0, t = 2001, · · · [Renewable Source Availability]
(62)

Fortunately, the ecological reproducibility of recycling sink into source and
restoring the original ecological shape has been built in the earth as a self-
regulatory mechanism of Gaia [6]. Consumer garbage, industrial wastes and
capital depreciation dumping have been taken care of and disintegrated by a
natural reproduction process, and the environment so far seems to have contin-
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ued to restore itself to a certain degree. Therefore, a sustainable development
might be possible for the time being so long as the accumulated sink which the
ecological reproduction process fails to disintegrate does not reach the environ-
mental capacity of regeneration.

As production and consumption activities expand exponentially, however,
such environmental sink also continues to accumulate exponentially. And natu-
rally built-in ecological reproducibility of Gaia eventually begins to fail to regen-
erate the sink so that a portion of the sink will be left unprocessed Eventually, an
environmental catastrophe occurs, and the earth might become uninhabitable
for many living species, including human beings. In fact, many environment
scientists warn us that such a catastrophe has already begun. For instance, see
[2].

Accordingly, to be able to stay within a limit to ecological reproducibility,
first of all, the total amount of environmental sink has to be directly regulated
within an environmentally regenerating capacity. Second, new development of
recycling-oriented products has to be encouraged so that the amount of environ-
mental sink is reduced at every stage of reproduction and consumption process.
Third, hazardous and toxic wastes which are not naturally disposed of have to
be chemically processed and recycled safely at all costs. Then, the equation of
ecological reproducibility (61) is expanded as follows:

∞∑
t=2001

(GCt + GYt + GKt) ≤ (ε + µ)
∞∑

t=2001

SKt+1 [Recycling of Sink] (63)

A Steady State Equilibrium

A steady state equilibrium of the ecological reproducibility is attained at SKt+1 =
SKt and SRt+1 = SRt; that is, ∆SKt = ∆SRt = 0. From the above equations
of ecological reproducibility this implies

GCt + GYt + Gkt = (ε + µ)SKt = λ1Yt (64)

A steady state of capital accumulation is already obtained under the section of
physical reproducibility. Using the same numerical values of that steady state,
and constant values assigned in Table 10, we have

GCt + GYt + Gkt = 0.5 · 80 + 0.1 · 100 + 0.5 · 20 = 60. (65)
(ε + µ)SKt = (0.15 + 0.05)300 = 60. (66)

λ1Yt = 0.6 · 100 = 60. (67)

A steady state of population growth is attained when rates of birth and death
are equal as already shown under the section of social reproducibility. Hence, a
steady sate of ecological reproducibility is shown to exist and our model of the
ecological reproducibility becomes consistent. However, this is no longer true
if non-renewable resources are considered explicitly. Figure 16 illustrates that
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Figure 16: A Steady State of Ecological Reproducibility

an ecological steady state equilibrium is sustained almost throughout the 21st
century until net output starts decreasing in the year 2082. This decrease in the
net output is caused by a diminishing productivity, which is in turn caused by
the depletion of non-renewable resources. Accordingly, per capita consumption
decreases and a death rate increases, resulting in a decline of population growth
that begins to start in the year 2091, a decade later. Hence, an ecological steady
state equilibrium becomes impossible in the long run if non-renewable resources
are taken into consideration.

Simulations for a Sustainable Growth

When a depreciation rate and a birth rate are reset at the original values; that is
δ = 0.02 and α = 0.03, respectively, the economy begins to grow. However, this
growth paths are eventually curbed by a decrease in net output, and declining
population that follows it, as illustrated in Figure 17.

To maintain the growth paths, a level of substitutes might be again set to
be 80% as in the previous section. Then the net output and population once
again continue to grow for the entire 21st century. However, this sustained
growth paths begin to cause ecological unsustainability, since the amount of
sink continues to accumulate and source is completely depleted in the year 2090
as illustrated in Figure 18.

Eventually some negative feedback loops might emerge to prevent such envi-
ronmental catastrophes. For instance, the over-accumulation of the sink such as
chemical wastes will surely affect human health, and as a result a birth rate will
be reduced and a death rate will be increased : an emergence of new feedback
loops from sink to birth and death rates. Since a feedback loop of the death
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Figure 17: Growth Paths of Ecological Reproducibility

rate is introduced in Table 8, let us consider only a feedback loop of the birth
rate as the table function in Table 11.

Table 11: A Table Function of Birth Rate
SKt+1/SKinitial 0 0.5 1 2 3 4 5 10

Birth Rate α 0.05 0.04 0.03 0.02 0.01 0.008 0.005 0.003

The birth rate is here assumed to decrease from the initial value of 3% , as
the amount of sink continues to increase. When the amount of sink triples, it
is assumed to become the same as the initial death rate of 1% . In this way,
a change in population as a whole is assumed to depend on both the interplay
between the accumulated level of sink and birth rate, and the availability of per
capita consumption and death rate.

Meanwhile, as renewable source continue to be depleted, output will be
curbed as in the case of the depletion of non-renewable resources: a feedback
loop from source to output. Let us consider such feedback loop by introducing
a second table function of productivity, called an ecological productivity or
productivity2, as defined in Table 12.

Table 12: A Table Function of Ecological Productivity
SRt+1/SRinitial 0 0.1 0.2 0.3 0.4 0.5 0.6 - 1 2
Productivity2 0 0.1 0.2 0.4 0.6 0.8 1 1.2

The table function is assumed similarly as in Table 7 such that the produc-
tivity is not affected until renewable source is depleted up to 40%, beyond which,
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Figure 18: Growth Paths with Non-Renewable Substitutes

then, it begins to decrease gradually. Since renewable source could increase be-
yond the initial amount due to recycling and natural regeneration, productivity
is also assumed to increase by 20% in that case.

The equation of the Production Feedback (45) may now be redefined as

Yt = Productivity
(

Rt+1

Rinitial

)
Productivity2

(
SRt+1

SRinitial

)
Min{1

v
Kt, `Lt} (68)

This implies that output level is affected by the remaining ratios of both non-
renewable resources and renewable source.

By newly introducing these two feedback loops, ecological reproducibility
could be restored by avoiding the problems of the over-accumulation of the sink
and the depletion of the renewable source and non-renewable resources. To see
this possibility, Monte Carlo or multivariate sensitivity simulations are done over
two constants; that is, a level of substitutes for non-renewable resources and an
output-substitutes ratio. To be specific, each constant value is randomly chosen
between 0 and 1 according to the Random Uniform Distribution, and simulations
are repeated 200 times. Figure 19 shows a simulation result of confidence bounds
by the growth paths of population. A line in the middle of the graph indicates a
mean value of the population, which indicates that population growth cannot be
sustained as a mean value. In fact, the growth paths of population are shown to
be unsustainable within at least 75% of confidence bounds. In other words, even
with the introduction of ecological feedback loops, it is very hard to randomly
find a sustainable path over the 22nd century. The Monte Carlo simulation
shows that if we could find it, we would be very lucky!

One such ecologically sustainable growth path over the next two centuries
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Figure 19: Ecological Sensitivity Simulation of Population

could be luckily attained at the 80% level of substitutes for non-renewable re-
sources and the output-substitutes ratio of 20% as illustrated in Figure 20. Even
so, it would be burdensome to attain such constant values in reality. How can
we produce 80% substitutes of non-renewable resources such as oil and other
fossil energies? How can we make such technology of substitutes more efficient,
by lowering the output-substitutes ratio, so that the amount of output is not
excessively eaten up for the production of substitutes? In our numerical exam-
ple, to attain the above ecological sustainability, the ratio has to be lowered to
0.2 from the initial value of 1 that is assumed in the previous section of social
reproducibility.

Even if this lucky sustainable path is found, there will be no way of escaping
from the economic trap as illustrated in Figure 14. The economic trap will even-
tually emerge in the 23rd century so long as non-renewable resources continue
to be depleted and production of substitutes continue to eat up the amount of
output, leaving less and less amount for consumption, saving and investment.
In fact, as soon as our numerical simulation in Figure 20 is extended into the
23rd century, such an economic trap will begin to emerge on the horizon!

DISCUSSIONS FOR THE SECTION:

(a) As a fundamental cause of contaminating the earth, three dumping processes
of production and consumption activities are conceptually classified: consumer
garbage, industrial wastes, and capital depreciation dumping. Consider as many
examples of such dumping processes as passible, and discuss whether such a
classification of dumping processes is appropriate or not in building an ecological
sustainable model.

(b) A feedback loop from sink to the death rate is not introduced in the above
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Figure 20: Growth Paths with Ecological Feedback

ecological feedback simulation. Discuss how accumulated hazardous wastes and
chemical toxics affect both birth and death rates by referencing books such as
[2]. Then, try to formalize more comprehensive way to introduce two feedback
loops in the Ecological Reproducibility Model.

(c) A dismal conclusion from the simulation of the ecological feedback model
would be no sustainable growth path is possible in the long run as long as
our production and consumption activities are dependent on non-renewable re-
sources. Do you agree ? Discuss how long could be the long run, and possible
policies and our living styles to elongate it.

Conclusion

We have constructed a system dynamics model of long-term sustainability step-
by-step from a simple macroeconomic growth model. Yet our simulations for
sustainability are far from comprehensive, and numerical data used in the model
are not the real one. Hence, there could be many ways to expand or revise the
model for further consideration of a long-term sustainability within a region, a
country, or globally. Whichever sustainability model being constructed, how-
ever, the logic developed in our model will remain worth considered. In this
sense, the system dynamics model developed here would become genetic for
sustainability modeling. One of the conclusions from the model is that no long-
term sustainability is possible under the usage of non-renewable resources, and it
will remain a challenging issue for any sustainability model yet to be developed.
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Appendix

A complete list of the Vensim equations for Ecological Reproducibility Model
in Figure 15 is provided below as the reader’s reference of system dynamics
modeling. They are arranged in the order as variable and constant names appear
so that the reader can easily follow the equations as if he or she is reading a
story from the system dynamics model.

Capital= INTEG (Investment - Depreciation, Initial Capital)
Unit: machine

Initial Capital = 400
Unit: machine

Investment = S to I Conversion * Saving
Unit: machine/Year

S to I Conversion = 1 (This constant is hidden in the model)
Unit: machine / food

Saving = MAX(Output - Consumption -
‘‘Output-Substitutes Ratio’’ * Substitutes, 0)

Unit: food/Year
‘‘Output-Substitutes Ratio’’ = 1

Unit: food/ton
Depreciation = Depreciation Rate * Capital

Unit: machine/Year
Depreciation Rate = 0.02

Unit: 1/Year
Output = Productivity * MIN(Capital / "Capital-Output Ratio",

"Output-Labor Ratio" * Workers
Unit: food / Year

Net Output = Output - Depreciation /S to I Conversion
Unit: food/Year

Productivity = Productivity Table ("Non-Renewable Resources" /
"Initial Non-Renewable Resources")

Unit: Dmnl
Productivity Table([(0,0)-(1,1)],(0,0),(0.1,0.1),(0.2,0.2),

(0.3,0.4),(0.4,0.6),(0.5,0.8),(0.6,1),(1,1))
Unit: Dmnl

"Capital-Output Ratio" = 4
Unit: machine / (food / Year)

"Output-Labor Ratio" = 0.4
Unit: (food / Year) / person

Workers = Labor Force Participation Rate * Population
Unit: person

Labor Force Participation Rate = 0.6
Unit: person / person

Population= INTEG (Birth - Death, 500)
Unit: person

Birth = Birth Rate * Population
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Unit: person / Year
Birth Rate = 0.03

Unit: (person / person) /Year
Death = Death Rate * Population

Unit: person/Year
Death Rate = Death Rate Table ( Per Capita Consumption )

Unit: 1/Year
Death Rate Table([(0.04,0)-(0.16,0.1)],(0.04,0.1),(0.06,0.07),

(0.08,0.05),(0.1,0.03),(0.12,0.02),(0.14,0.015),(0.16,0.01))
Unit: 1/Year

Consumption = Per Capita Consumption * Population
Unit: food/Year

Per Capita Consumption = MIN(Minimum Standards of Consumption,
Output/Population)

Unit: (food/Year) / person
Subsistence Consumption Level = 0.16

Unit: (food / Year ) / person
"Non-Renewable Resources"= INTEG ( Substitutes - Raw Material,

"Initial Non-Renewable Resources")
Unit: ton

"Initial Non-Renewable Resources" = 1000
Unit: ton

Substitutes = Level of Substitutes * Raw Material
Unit: ton/Year

Level of Substitutes = 0
Unit: Dmnl

Raw Material = Raw Material Input Rate * Output
Unit: ton / Year

Raw Material Input Rate = 0.05
Unit: ton / food

Sink= INTEG ( wastes - Regeneration - Recycling, 300)
Unit: source

wastes = Consumer Garbage + Industrial Wastes + Dumping
Unit: source/Year

Consumer Garbage = Garbage Rate * Consumption
Unit: source/Year

Garbage Rate = 0.5
Unit: source / food

Industrial Wastes = Wasting Rate * Output
Unit: source/Year

Wasting Rate = 0.1
Unit: source/food

Dumping = Dumping Rate * Depreciation
Unit: source/Year

Dumping Rate = 0.5
Unit: source / machine

38



Regeneration = Natural Rate of Regeneration * Sink
Unit: source / Year

Natural Rate of Regeneration = 0.15
Unit: 1 / Year

Recycling = Recycling Rate * Sink
Unit: source/Year

Recycling Rate = 0.05
Unit: 1/Year

Source= INTEG (Regeneration + Recycling - Renewable Raw Material,
Initial Source)

Unit: source
Initial Source = 3000

Unit: source
Renewable Raw Material = Renewable Raw Material Input Rate * Output

Unit: source/Year
Renewable Raw Material Input Rate = 0.6

Unit: source / food
****************
INITIAL TIME = 2001

Unit: Year
FINAL TIME = 2101

Unit: Year
****************
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